Volume 7, Issue 3 (7-2025)                   pbp 2025, 7(3): 68-77 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Mkangara M. GC-MS Analysis of Bioactive Compounds in Ethyl acetate and Chloroform extracts of Aloe rabaiensis Rendle. pbp 2025; 7 (3) :68-77
URL: http://pbp.medilam.ac.ir/article-1-209-en.html
Faculty of Science, Technology and Environmental Studies, The Open University of Tanzania, Dar es Salaam, Tanzania , mkangaram@yahoo.com
Abstract:   (222 Views)
Objective: Plants have been a good source of lead compounds for nutraceutical and therapeutic potentials against ailments of human and animal importance since the introduction of man on earth. The lead compounds continue to be precursors in developing drugs with insignificant side effects and replace synthetic medicine. Several phytochemical compounds have been reported in different species of Aloe belonging to the family Asphodelaceae. The established phytoconstituents from the genus Aloe possess several activities, including antiviral, antibacterial, anticancer, neuroprotective, and antioxidant properties. However, there is limited information related to phytochemicals from Aloe rabaiensis Rendle.
Methods: This is the first study investigating the phytoconstituents in A. rabaiensis from Tanzania. Gas chromatography-mass spectrometry (GC-MS) analysis of A. rabaiensis leaf extracts was performed using GC-MS equipment (Agilent Technologies).
Results: The GC-MS analysis demonstrated the presence of fourteen and six compounds from the leaf’s ethyl acetate and chloroform extracts of A. rabaiensis, respectively.
Conclusion: The compounds belong to different classes, including amines, esters, carboxylic acid, ketone, phenol, alkane and alcohol. No common compound(s) was/were identified from both extracts. The identified phytoconstituents, backed with reported ethnomedical and ethnoveterinary use of A.  rabaiensis are evidence, thus, significant precursors for drug development.

 
Full-Text [PDF 1283 kb]   (28 Downloads)    
Type of Study: Research | Subject: Bioactive Compounds
Received: 2023/11/14 | Accepted: 2024/04/13 | Published: 2025/07/27

References
1. Palhares RM, Drummond MG, Brasil AF, Cosenza GP, Brandão GL and Oliveira G. Medicinal plants recommended by the world health organisation: DNA barcode identification associated with chemical analyses guarantees their quality. PloS One 2015; 10(5): e0127866. Doi: 10.1371/journal.pone.0127866.
2. Thomford NE, Dzobo K, Chopera D, Wonkam A, Skelton M, Blackhurst D et al. Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceut. (2015); 8(3): 637-663. Doi: 10.3390/ph8030637.
3. Casuga FP, Castillo AL, Corpuz MJAT. GC–MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia (Blanco)(Moraceae) leaves. Asian Pac. J. Trop. Biomed. 2016; 6(11): 957-61. Doi: 10.1016/j.apjtb.2016.08.015.
4. Newton LE. Aloes in habitat. Aloes. United States: CRC Press; 2004. P.21-32. https://www.taylorfrancis.com/chapters/edit/10.1201/9780203476345-8.
5. Schmelzer GH. Medicinal plants. Wageningen: PROTA Foundation; 2013. https://www.worldcat.org.
6. Neuwinger HD. African ethnobotany: poisons and drugs: chemistry, pharmacology, toxicology. United States: Chapman and Hall Ltd; 1996. P.941.
7. Grace OM, Simmonds MS, Smith GF, van Wyk AE. Documented utility and biocultural value of Aloe L. (Asphodelaceae): A review. Econ. Bot. 2009; 63(2): 167-78. Doi: 10.1007/s12231-009-9082-7.
8. Zaheer J, Najam-Us-Saqib Q, Anwar T, Khan FS, Akram M, Munir N, et al. Phytochemical Profile of Rock Jasmine (Androsace foliosa Duby ex Decne) by Using HPLC and GC–MS Analyses. Arabian J. for Sci. and Eng. 2021; 46(6): 5385-5392. Doi: 10.1007/s13369-020-05241-8
9. Sun J, Wang X, Wang P, Li L, Qu W, Liang J. Antimicrobial, antioxidant and cytotoxic properties of essential oil from Dictamnus angustifolius. J. Ethnopharmac. 2015; 159: 296-300. Doi: 10.1016/j.jep.2014.06.055
10. Harer SL, Bhatia MS. In-silico docking based design and synthesis of [1H, 3H] imidazo [4, 5-b] pyridines as lumazine synthase inhibitors for their effective antimicrobial activity. J. Pharm. Bioallied Sci. 2014; 6(4): 285. Doi: 10.4103/0975-7406.142962
11. Yin G, Zeng H, He M, Wang M. Extraction of Teucrium manghuaense and evaluation of the bioactivity of its extract. Int. J. Mol. Sci. 2009; (10): 4330-41. Doi: 10.3390/ijms10104330.
12. Chauhan RS, Nautiyal MC, Tava A, Cecotti R. Essential oil composition from leaves of Heracleum candicans Wall.: a sustainable method for extraction. J. Essent. Oil. Res. 2014; 26(2): 130-2. Doi: 10.1080/10412905.2013.868330.
13. Goel R, Luxami V, Paul K. Synthetic approaches and functionalisations of imidazo [1, 2-a] pyrimidines: an overview of the decade. RSC Adv. 2015; 5(99): 81608-37. Doi: 10.1039/c5ra14795f.
14. Takahashi M, Arakaki M, Yonamine K, Hashimoto F, Takara K, Wada K. Influence of fruit ripening on color, organic acid contents, capsaicinoids, aroma Compounds, and antioxidant capacity of Shimatogarashi (Capsicum frutescens). J. Oleo. Sci. 2018; 67(1):113-23. Doi: 10.5650/jos.ess17156.
15. Radulović NS, Dekić MS, Stojanović‐Radić ZZ, Zoranić SK. Geranium macrorrhizum L. (Geraniaceae) essential oil: a potent agent against Bacillus subtilis. Chem. Biodivers. 2010; 7(11):2783-800. Doi: 10.1002/cbdv.201000100.
16. Gardeli C, Vassiliki P, Athanasios M, Kibouris T, Komaitis M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food. Chem. 2008; 107(3):1120-30. Doi: 10.1016/j.foodchem.2007.09.036.
17. Petrović GM, Stamenković JG, Kostevski IR, Stojanović GS, Mitić VD, Zlatković BK Chemical composition of volatiles; antimicrobial, antioxidant and cholinesterase inhibitory activity of Chaerophyllum aromaticum L. (Apiaceae) essential oils and extracts. Chem. and Biodiv. 2017; 14(5): 1600367. Doi: 10.1002/cbdv.201600367.
18. Fazeenah AA, Quamri MA. Behidana (Cydonia oblonga Miller)–a review. World J. Pharmaceutical Res. 2016; 5(11): 79-91. Doi: 10.20959/wjpr201611-7141.
19. Formisano C, Rigano D, Senatore F, Raimondo FM, Maggio A, Bruno M. Essential oil composition and antibacterial activity of Anthemis mixta and A. tomentosa (Asteraceae). Natural Prod. Communic. 2012; 7(10):1934578X1200701035. Doi: 10.1177/1934578X1200701035.
20. Demirel Z, Yilmaz-Koz FF, Karabay-Yavasoglu UN, Ozdemir G, Sukatar A. Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. J. of Serbian Chem. Soc. 2009; 74(6). Doi: 10.2298/JSC0906619D.
21. Zhou JX, Braun MS, Wetterauer P. Supplementary materials: antioxidant, cytotoxic, and antimicrobial activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. extracts. Medicine 2019; 6(43): 1-16. Doi: 10.3390/medicines6020043.
22. Milne GW Drugs: Synonyms and Properties. London: Routledge; 2018.
23. Bharath MR, Azeem MA, Basha S, Keerthan HV. Antimicrobial activity of cinnamon extracts against foodborne pathogens E. coli, S. tyhimurium and S. aureus and L. monocytogens. J. Pharma. Biol. Sci. 2016; 11(6): 66-72. Doi: 10.9790/3008-1106066672.
24. Madkour HM, Ghareeb MA, Abdel-Aziz MS, Khalaf OM, Saad AM, El-Ziaty AK. Gas chromatography-mass spectrometry analysis, antimicrobial, anticancer and antioxidant activities of n-hexane and methylene chloride extracts of Senna italica. J. Appl. Pharm. Sci. 2017; 7: 23-32. Doi: 10.7324/JAPS.2017.70604.
25. Santos CCDMP, Salvadori MS, Mota VG, Costa LM, de Almeida AAC, de Oliveira GAL, et al. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci J. 2013; 2013. Doi: 10.1155/2013/949452.
26. Balachandar R, Navaneethan R, Biruntha M, Kumar KKA, Govarthanan M, Karmegam N. Antibacterial activity of silver nanoparticles phytosynthesized from Glochidion candolleanum leaves. Material Lett. 2022; 311: 131572. Doi: 10.1016/j.matlet.2021.131572.
27. Li J, Oost R, Maryasin B, González L, Maulide N. A redox-neutral synthesis of ketones by coupling of alkenes and amides. Nature Communic. 2019; 10(1):1-7. Doi: 10.1038/s41467-019-10151-x.
28. Chu D, Zhang X, Mu J, Avramidis S, Xue L, Li Y. A greener approach to byproducts from the production of heat-treated poplar wood: Analysis of volatile organic compound emissions and antimicrobial activities of its condensate. J. of Clean. Prod. 2019; 213: 521-7. Doi: 10.1016/j.jclepro.2018.12.163.
29. Iwara I, Igile G, Mboso O, Mgbeje B, Ebong P. Evaluation of phytochemical components from ethyl acetate fraction of Vernonia calvoana using gas chromatography-mass spectrometry analysis and its antioxidants activities. Afric. J. of Phar. and Pharmacol. 2017; 11(42): 534-9. Doi: 10.5897/AJPP2017.4846.
30. Ramana LN, Sethuraman S, Ranga U, Krishnan UM. Development of a liposomal nanodelivery system for nevirapine. J. of Biom. Sci. 2010; 17(1):1-9. Doi: 10.1186/1423-0127-17-57.
31. Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM. 2, 4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Intern. J. of Food. Microbiol. 2015; 211: 44-50. Doi: 10.1016/j.ijfoodmicro.2015.06.025.
32. Song YW, Lim Y, Cho SK. 2, 4‑Di‑tert‑butylphenol, a potential HDAC6 inhibitor, induces senescence and mitotic catastrophe in human gastric adenocarcinoma AGS cells. Biochimica et Biophysica Acta (BBA). Mol. Cell Res. 2018; 1865(5): 675-83. Doi: 10.1016/j.bbamcr.2018.02.003.
33. Dharni S, Maurya A, Samad A, Srivastava SK, Sharma A, Patra DD. Purification, characterization, and in vitro activity of 2, 4-di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J. of Agric. and Food. Chem. 2014; 62(26): 6138-6146. Doi: 10.1021/jf5001138.
34. Khmelshchikov YV, Noskov DS. Pharmaceutical composition for treatment of inflammatory ear diseases, method for producing same and method for treatment using said composition. Google Patents; 2018: WO/2016/137352.
35. Kazemipoor M, Fadaei Tehrani P, Zandi H, Golvardi Yazdi R. Chemical composition and antibacterial activity of Berberis vulgaris (barberry) against bacteria associated with caries. Clin. and Exper. Dent. Res. 2021; 7(4): 601-608. Doi: 10.1002/cre2.379.
36. Mei J, Guo Q, Wu Y, Li Y, Yu H. Study of proteolysis, lipolysis, and volatile compounds of a Camembert-type cheese manufactured using a freeze-dried Tibetan kefir co-culture during ripening. Food. Sci. and Biotechnol. 2015; 24(2): 393-402. Doi: 10.1007/s10068-015-0052-9.
37. Najm MR, Sultan FI. Characterization and detection of some active compounds in seeds oil of Cumin (Cuminum cyminum) by GC-MS and GLC. J. of Kerbala for Agric. Sci. 2022; 9: 71-85. Doi: 10.59658/jkas.v9i3.997
38. Ubaid JM, Kadhim MJ, Hameed IH. Study of bioactive methanolic extract of Camponotus fellah using Gas chromatography–mass spectrum. Int. J. of Toxic. and Pharm. Res. 2016; 8(6): 434-439.
39. Ziino M, Condurso C, Romeo V, Tripodi G, Verzera A. Volatile compounds and capsaicinoid content of fresh hot peppers (Capsicum annuum L.) of different Calabrian varieties. J. of the Sc. of Food and Agric. 2009; 89(5): 774–780. Doi: 10.1002/JSFA.3511.
40. Pino JA, Winterhalter P, Castro-Benítez M. Odour-active compounds in baby banana Fruit (Musa acuminata AA Simmonds cv. Bocadillo). Int. J. of Food Prop. 2017; 20(2): 1448-1455. Doi: 10.1080/10942912.2017.1349142.
41. Ma T, Wang J, Wang L, Yang Y, Yang W, Wang H, et al. Ultrasound-combined sterilisation technology: An effective sterilisation technique ensuring the microbial safety of grape juice and significantly improving its quality. Foods., 2020; 9(10): 1512. Doi: 10.3390/foods9101512.
42. da Silva Oliveira J, de Freitas RM. Phytol a Natural Diterpenoid with Pharmacological Applications on Central Nervous System: A Review. Recent. Pat. on Biotechnol. 2014; 8(3): 194-205. Doi: 10.2174/187220830803150605162745.
43. Byju K, Vasundhara G, Anuradha V, Nair SM, Kumar NC. Presence of phytol, a precursor of vitamin E in Chaetomorpha antinnina. Mapana J. of Sci. 2013; 12(2): 57-65. Doi: 10.12723/mjs.25.6.
44. Choi SJ, Kim JK, Kim HK, Harris K, Kim CJ, Park GG, et al. 2, 4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 cells and in mice. J. Medic. Food. 2013; 16(11): 977-983. Doi: 10.1089/jmf.2012.2739.
45. Liu R, Mabury SA. Unexpectedly high concentrations of 2, 4-di-tert-butylphenol in human urine. Environ. Pollut. 2019; 252: 1423-1428. Doi: 10.1016/j.envpol.2019.06.077.
46. Powers JF, Evinger MJ, Tsokas P, Bedri S, Alroy J, Shahsavari M, et al. Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice. Cell Tissue Res. 2000; 302(3): 309-320. Doi: 10.1007/s004410000290.
47. Tighadouini S, Benabbes R, Tillard M, Eddike D, Haboubi K, Karrouchi K, et al. Synthesis, crystal structure, DFT studies and biological activity of (Z)-3-(3-bromophenyl)-1-(1, 5-dimethyl-1 H-pyrazol-3-yl)-3-hydroxyprop-2-en-1-one. Chem. Cent. J. 2018; 12(1): 1-11. Doi: 10.1186/s13065-018-0492-4.
48. Mkangara M, Fulgence NM. Antimicrobial and cytotoxicity activities of medicinal plants against Salmonella gallinarum isolated from chickens. Vet. Med. Int. 2022; 2022. Doi: 10.1155/2022/2294120.
49. Mkangara M, Mbega E, Chacha M. Evaluation of acute toxicity and sub-acute toxicity of the methanolic extract of Aloe rabaiensis Rendle in BALB/c mice. J. Med. Plants Res. 2019; 13(13): 296-303. Doi: 10.5897/JMPR2019.6756.
50. Chemical Hazard Classification and Labeling: Comparison of OPP Requirements and the GHS. 2004 [cited 2004 July 7]. Available from URL: Https://www.epa.gov/sites/default/files/2015-09/documents/ghscriteria-summary.pdf

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.