Volume 7, Issue 3 (7-2025)                   pbp 2025, 7(3): 87-104 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

s B, BS A K, PM H, H S M. From Fruit to Pharma: A Review on the Phytochemicals, Extraction Methods, and Pharmacological Potential of Citrullus lanatus. pbp 2025; 7 (3) :87-104
URL: http://pbp.medilam.ac.ir/article-1-308-en.html
1- RL Jalappa College of Pharmacy, Sri Devaraj Urs Academy Higher Education and Research (A Deemed to be University), Tamaka, Kolar-563103, India. , bhargavi.sklr123@gmail.com
2- R L Jalappa College of Pharmacy, Sri Devaraj Urs Academy Higher Education and Research (A Deemed to be University), Tamaka, Kolar-563103, India.
Abstract:   (321 Views)
Introduction: Watermelon, a tropical fruit with high water content, is rich in phytochemicals like cucurbitacins, flavonoids, glycosides, carotenoids, polyphenols, and amino acids. These compounds have anti-inflammatory and anticancer effects, and can help control blood pressure, glucose levels, and lipid metabolism.

 Methodology: A complete database search was undertaken using terms such as' pharmacology','extraction methods,' ' nutrition profile,' ‘Citrullus lanatus’, ‘phytochemistry’ to locate relevant material. Databases such as Google Scholar, SID, Magiran, PubMed, and Scopus were utilized to look for relevant publications, particularly ethnobotanical research on the issue.
Results: Watermelon exhibits a range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anti-ulcer, antidiabetic, anti-obesity, laxative, and anticancer properties. The study emphasizes the need for effective and environmentally friendly extraction techniques, including supercritical fluid and ultrasound-assisted extraction, to separate bioactive components from watermelon
Conclusion:  Environmentally friendly extraction methods and further research could advance its potential as a plant-based medication.

 
Full-Text [PDF 1207 kb]   (38 Downloads)    
Type of Study: Review/Systemtic review | Subject: Phytomedicine
Received: 2025/05/26 | Accepted: 2025/05/28 | Published: 2025/07/27

References
1. Manivannan A, Lee ES, Han K, Lee HE, Kim DS. Versatile nutraceutical potentials of watermelon—A modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules. 2020 Nov 11;25(22):5258.
2. Mercy GA, Bosa EO, The morphological characterization of the melon species in the family cucurbitaceae juss., and their utilization in Nigeria, International J of Modern Botany 2013; 3(2): 15-19.
3. Gupta R, Kumar GP, Singh G, Malik J, Siroliya VK, Maurya NK. Ethnomedicinal significance of Citrulluslanatus (watermelon): A Pharmacological review.
4. Erhirhie EO, Ekene NE. Medicinal values on Citrullus lanatus (watermelon): pharmacological review. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2013 Oct;4(4):1305-12.
5. Nadeem M, Navida M, Ameer K, Iqbal A, Malik F, Nadeem MA, Fatima H, Ahmed A, Din A. A comprehensive review on the watermelon phytochemical profile and their bioactive and therapeutic effects. Food Science and Preservation. 2022;29(4):546-76.
6. Manivannan A, Lee ES, Han K, Lee HE, Kim DS. Versatile nutraceutical potentials of watermelon—A modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules. 2020 Nov 11;25(22):5258.
7. Vinhas AS, Silva CS, Matos C, Moutinho C, Ferreira da Vinha A. Valorization of watermelon fruit (Citrullus lanatus) byproducts: phytochemical and biofunctional properties with emphasis on recent trends and advances. World Journal of Advance Healthcare Research. 2021;5(1):302-9.
8. Sulieman AM, Ibrahim SE. Antioxidant and pharmacological activity of watermelon (Citrullus lanatus) seed oil. InMultiple Biological Activities of Unconventional Seed Oils 2022 Jan 1 (pp. 185-194). Academic Press.
9. Deshmukh CD, Jain A, Tambe MS. Phytochemical and pharmacological profile of Citrullus lanatus (THUNB). Biolife. 2015;3(2):483-8.
10. Khojiyeva GU. NUTRITIONAL BENEFITS OF BIOACTIVE COMPOUNDS FROM WATERMELON: A COMPREHENSIVE REVIEW. Экономика и социум. 2025(1-2 (128)):409-14.
11. Praise ET, Azubuike AC, Roseline EC, Finan IC. Nutritional Composition of Boiled and Unboiled Watermelon: A Comparative Study. Asian J. Biol. Sci. 2025;18(1):118-23.
12. Fahmi M. Phytochemical Analysis and Lipstick Formulation Optimization of Watermelon Rind Extract (Citrullus Lanatus): Physicochemical Characterization and Safety Evaluation (Doctoral dissertation, Universitas Islam Indonesia).
13. Pérez-Juárez CM, García-Ortíz JD, González-Martínez DW, Flores-Gallegos AC, Cruz-Requena M, Sáenz-Galindo A, Ascacio-Valdes JA, Rodríguez-Herrera R. Physicochemical characterization of flours and biocompounds obtained by microwave and ultrasound assisted extraction from melon and watermelon rind flours. Food and Humanity. 2025 May 1;4:100479.
14. Varghese S, Narmadha R, Gomathi D, Phytochemical screening and HPTLC fingerprinting analysis of Citrullus lanatus (Thunb.) seed, J of acute Disease 2013:122-126.
15. Olamide AA, Olayemi OO, Demetrius OO, Effects of methanolic extract of Citrullus lanatus seed on experimentally induced prostatic hyperplasia, Eur J of Med Pla 2011; 1(4): 171- 179.
16. Wahid S, Khan RA, Feroz Z, Ikram R. (Analgesic, anti-inflammatory and toxic effects of ethanol extracts of Cucumis melo and Citrullus lanatus seeds). Pak J Pharm Sci, 2020; 33(3): 1049-1055.
17. Onyinye AV, Emeka AG. (Citrullus lanatus ethanolic seed extract improved male sexual behavior in rats via enhancement of sexual hormone and hypothalamic-pituitary-gonadal pathway). J Krishna Inst Medical Sci Univ, 2019; 8(3): 96-107.
18. Babaiwa, UF, Erharuyi O, Falodun AO, Akerele J. (Antimicrobial activity of ethyl acetate extract of Citrullus lanatus seeds). Trop J Pharm Res, 2017; 16(7): 1631-1636.
19. Adedeji GT, Bamidele O, Ogunbiyi A. (Haematological and biochemical properties of methanolic extract of Citrullus lanatus seeds). Brit J Pharm Res, 2017; 15(6): 1-10.
20. Zhan YY, Wang JH, Tian X, Feng SX, Xue L, Tian LP. (Protective effects of seed melon extract on CCl4-induced hepatic fibrosis in mice). J Ethnopharmacol, 2016; 193: 531-537.
21. Omigie I, Agoreyo F. (Effects of watermelon (Citrullus lanatus) seed on blood glucose and electrolyte parameters in diabetic wistar rats). Journal of Applied Sciences and Environmental Management, 2014; 18(2): 231-233.
22. Lucky OO, John UO, Kate IE, Peter OO, Jude OE. (2012). (Quantitative determination, metal analysis and antiulcer evaluation of methanol seeds extract of Citrullus lanatus Thunb (Cucurbitaceae) in rats). Asian Pac J Trop Dis, 2012; 2(3): S1261-S1265.
23. Poduri A, Rateri DL, Saha SK, Saha S, Daugherty A. (Citrullus lanatus `sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor deficient mice). J Nutr Biochem, 2013; 24(5): 882-886.
24. Suliburska, J.; Bogdanski, P.; Krejpcio, Z.; Pupek-Musialik, D.; Jablecka, A. The effects of l-arginine, alone and combined with vitamin C, on mineral status in relation to its antidiabetic, anti-inflammatory, and antioxidant properties in male rats on a high-fat diet. Biol. Trace Elem. Res. 2014, 157, 67–74.
25. Alam, M.A.; Kauter, K.; Withers, K.; Sernia, C.; Brown, L. Chronic l-arginine treatment improves metabolic, cardiovascular and liver complications in diet-induced obesity in rats. Food Funct. 2013, 4, 83–91.
26. Evans, R.W.; Fernstrom, J.D.; Thompson, J.; Morris, S.M., Jr.; Kuller, L.H. Biochemical responses of healthy subjects during dietary supplementation with l-arginine. J. Nutr. Biochem. 2004, 15, 534–539.
27. Wu, G.; Meininger, C.J. Arginine nutrition and cardiovascular function. J. Nutr. 2000, 130, 2626–2629.
28. Hong, M.Y.; Hartig, N.; Kaufman, K.; Hooshmand, S.; Figueroa, A.; Kern, M. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet. Nutr. Res. 2015, 35, 251–258.
29. Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 2006, 17, 571–588.
30. Jobgen, W.; Fu, W.J.; Gao, H.; Li, P.; Meininger, C.J.; Smith, S.B.; Spencer, T.E.; Wu, G. High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 2009, 37, 187–198.
31. Marliss, E.B.; Chevalier, S.; Gougeon, R.; Morais, J.A.; Lamarche, M.; Adegoke, O.A.; Wu, G. Elevations of plasma methylarginines in obesity and ageing are related to insulin sensitivity and rates of protein turnover. Diabetologia 2006, 49, 351–359.
32. Pieper, G.M. Review of alterations in endothelial nitric oxide production in diabetes: Protective role of arginine on endothelial dysfunction. Hypertension 1998, 31, 1047–1060.
33. Míguez, L.; Marino, G.; Rodriguez, B.; Taboada, C. Effects of dietary l-arginine supplementation on serum lipids and intestinal enzyme activities in diabetic rats. J. Physiol. Biochem. 2004, 60, 31–37.
34. Mendez, J.D.; Balderas, F. Regulation of hyperglycemia and dyslipidemia by exogenous l-arginine in diabetic rats. Biochimie 2001, 83, 453–458.
35. Kohli, R.; Meininger, C.J.; Haynes, T.E.; Yan, W.; Self, J.T.; Wu, G. Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J. Nutr. 2004, 134, 600–608.
36. Oberoi, D.P.; Sogi, D.S. Utilization of watermelon pulp for lycopene extraction by response surface methodology. Food Chem. 2017, 232, 316–321.
37. Naz, A.; Butt, M.S.; Sultan, M.T.; Qayyum, M.M.; Niaz, R.S. Watermelon lycopene and allied health claims. EXCLI J. 2014, 13, 650.
38. Kyriacou, M.C.; Leskovar, D.I.; Colla, G.; Rouphael, Y. Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. Sci. Hortic. 2018, 234, 393–408.
39. Soteriou, G.A.; Kyriacou, M.C.; Siomos, A.S.; Gerasopoulos, D. Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem. 2014, 165, 282–289.
40. Oberoi, D.P.; Sogi, D.S. Prediction of lycopene degradation during dehydration of watermelon pomace (cv Sugar Baby). J. Saudi Soc. Agric. Sci. 2017, 16, 97–103.
41. Srivastava, S.; Srivastava, A.K. Lycopene; chemistry, biosynthesis, metabolism and degradation under various abiotic parameters. J. Food Sci. Technol. 2015, 52, 41–53.
42. Elumalai, M.; Karthika, B.; Usha, V. Lycopene-role in cancer prevention. Int. J. Pharma Bio Sci. 2013, 4, 371–378.
43. Nahum, A.; Hirsch, K.; Danilenko, M.; Watts, C.K.; Prall, O.W.; Levy, J.; Sharoni, Y. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27 Kip1 in the cyclin E–cdk2 complexes. Oncogene 2001, 20, 3428–3436.
44. Giovannucci, E. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer Inst. 1999, 91, 317–331.
45. Fesseha, M.; Hong, M.Y. Effects of Watermelon Consumption on Cellular Proliferation, and Apoptosis in Rat Colon (P05-019-19). Curr. Dev. Nutr. 2019, 3, 3–5.
46. Glenn, K.; Klarich, D.S.; Kalaba, M.; Figueroa, A.; Hooshmand, S.; Kern, M.; Hong, M.Y. Effects of Watermelon Powder and l-arginine Supplementation on Azoxymethane-Induced Colon Carcinogenesis in Rats. Nutr. Cancer 2018, 70, 938–945.
47. Sueakham, T.; Chantaramanee, C.; Iawsipo, P. Anti-proliferative effect of Thai watermelon leaf extracts on cervical and breast cancer cells. NU. Int. J. Sci. 2018, 15, 89–95.
48. Itoh, T.; Ono, A.; Kawaguchi, K.; Teraoka, S.; Harada, M.; Sumi, K.; Ando, M.; Tsukamasa, Y.; Ninomiya, M.; Koketsu, M.; et al. Phytol isolated from watermelon (Citrullus lanatus) sprouts induces cell death in human T-lymphoid cell line Jurkat cells via S-phase cell cycle arrest. Food Chem. Toxicol. 2018, 115, 425–435
49. Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Ballet, V.; Claes, K.; Verhaegen, J.; Van Assche, G.; Rutgeerts, P.J.; et al. 187 Bacterial Dysbiosis in Ulcerative Colitis Patients Differs From Crohn’s Disease Patients. Gastroenterology 2012, 142, S-46.
50. Danese, S.; Fiocchi, C. Ulcerative colitis. N. Engl. J. Med. 2011, 365, 1713–1725.
51. Clapper, M.L.; Cooper, H.S.; Chang, W.-C.L. Dextran sulfate sodium-induced colitis-associated neoplasia: A promising model for the development of chemopreventive interventions 1. Acta Pharm. Sin. 2007, 28, 1450–1459.
52. Ghosh, S.; Mitchell, R. Impact of inflammatory bowel disease on quality of life: Results of the European Federation of Crohn’s and Ulcerative Colitis Associations (EFCCA) patient survey. J. Crohn’s Colitis 2007, 1, 10–20.
53. Hatoum, O.A.; Binion, D.G.; Otterson, M.F.; Gutterman, D.D. Acquired microvascular dysfunction in inflammatory bowel disease: Loss of nitric oxide-mediated vasodilation. Gastroenterology 2003, 125, 58–69.
54. Hong, S.K.; Maltz, B.E.; Coburn, L.A.; Slaughter, J.C.; Chaturvedi, R.; Schwartz, D.A.; Wilson, K.T. Increased serum levels of l-arginine in ulcerative colitis and correlation with disease severity. Inflamm. Bowel Dis. 2010, 16, 105–111.
55. Coburn, L.A.; Horst, S.N.; Allaman, M.M.; Brown, C.T.; Williams, C.S.; Hodges, M.E.; Druce, J.P.; Beaulieu, D.B.; Schwartz, D.A.; Wilson, K.T. l-arginine availability and metabolism is altered in ulcerative colitis. Inflamm. Bowel Dis. 2016, 22, 1847–1858
56. Lemos, Á.T.; Ribeiro, A.C.; Fidalgo, L.G.; Delgadillo, I.; Saraiva, J.A. Extension of raw watermelon juice shelf-life up to 58 days by hyperbaric storage. Food Chem. 2017, 231, 61–69.
57. Kehili, M.; Kammlott, M.; Choura, S.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod. Process. 2017, 102, 340–349.
58. Madhavi P, Maruthi R, Kamala V, Evaluation of anti-inflammatory activity of citrullus lanatus seed oil by in-vivo and in-vitro models, Int. Res J Pharm. App Sci 2012; 2(4):104-108.
59. F. Garavand, S. Rahaee, N. Vahedikia and S. M. Jafari, Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients, Trends Food Sci. Technol., 2019, 89, 26–44.
60. M. Zwingelstein, M. Draye, J. L. Besombes, C. Piot and G. Chatel, Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods, Waste Manage., 2020, 102, 782–794.
61. Y. Ji, Y. Hou, S. Ren, C. Yao and W. Wu, Highly efficient extraction of phenolic compounds from oil mixtures by trimethylamine-based dicationic ionic liquids via forming deep eutectic solvents, Fuel Process. Technol., 2018, 171, 183–191.
62. Azwanida, A review on the extraction methods use in medicinal plants, principle, strength, and limitation, Med. Aromat. Plants, 2015, 4, 196.
63. M. Salihović, M. Pazalja and A. Ajanović, Antioxidant activity of watermelon seeds determined by DPPH assay, KUI, 2022, 71(5–6), 295–300.
64. G. Kasiramar, Significant role of soxhlet extraction process in phytochemical research, Mintage J. Pharm. & Med. Sci., 2019, 7, 43–47.
65. T. W. Caldas, K. E. Mazza, A. S. Teles, G. N. Mattos, A. I. Brígida, C. A. Conte-Junior, R. G. Borguini, R. L. Godoy, L. M. Cabral and R. V. Tonon, Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods, Ind. Crops Prod., 2018, 111, 86–91.
66. O. R. Alara, N. H. Abdurahman and C. I. Ukaegbu, Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity, J. Appl. Res. Med. Aromat. Plants, 2018, 11, 12–17 .
67. A. Molino, S. Mehariya, G. Di Sanzo, V. Larocca, M. Martino, G. P. Leone, T. Marino, S. Chianese, R. Balducchi and D. Musmarra, Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges, J. CO2 Util., 2020, 36, 196–209.
68. M. Maza, I. Álvarez and J. Raso, Thermal and non-thermal physical methods for improving polyphenol extraction in red winemaking, Beverages, 2019, 5(3), 47.
69. F. Chemat, M. A. Vian, A. S. Fabiano-Tixier, M. Nutrizio, A. R. Jambrak, P. E. Munekata, J. M. Lorenzo, F. J. Barba, A. Binello and G. Cravotto, A review of sustainable and intensified techniques for extraction of food and natural products, Green Chem., 2020, 22(8), 2325–2353 RSC .
70. W. Arthur, P. T. Akonor, T. Najah and C. Oduro-Yeboah, Report on training of processors and agric extension officers on handling postharvest losses of watermelons, mangoes and pineapples held on 11th and 12th May 2021, at MOFA, Shai Osudoku District Assembly, Accra, Ghana, 2021, p. 11063 .
71. A. Martínez-Sánchez and E. Aguayo, Effects of ozonated water irrigation on the quality of grafted watermelon seedlings, Sci. Hortic., 2020, 261, 109047 .
72. R. K. Saini and Y. S. Keum, Carotenoid extraction methods: A review of recent developments, Food Chem., 2018, 240, 90–103.
73. M. Alonzo-Macías, A. Cardador-Martínez, S. Mounir, G. Montejano-Gaitán and K. Allaf, Comparative study of the effects of drying methods on antioxidant activity of dried strawberry (Fragaria Var. Camarosa), J. Food Res., 2013, 2(2), 92 .
74. M. M. Cavalluzzi, A. Lamonaca, N. P. Rotondo, D. V. Miniero, M. Muraglia, P. Gabriele, F. Corbo, A. De Palma, R. Budriesi, E. De Angelis and L. Monaci, Microwave-assisted extraction of bioactive compounds from lentil wastes: Antioxidant activity evaluation and Metabolomic characterization, Molecules, 2022, 27(21), 7471.
75. D. Niu, E. F. Ren, J. Li, X. A. Zeng and S. L. Li, Effects of pulsed electric field-assisted treatment on the extraction, antioxidant activity and structure of naringin, Sep. Purif. Technol., 2021, 265, 118480.
76. V. Athanasiadis, T. Chatzimitakos, D. Kalompatsios, K. Kotsou, M. Mantiniotou, E. Bozinou and S. I. Lalas, Recent Advances in the Antibacterial Activities of Citrullus lanatus (Watermelon) By-Products, Appl. Sci., 2023, 13(19), 11063.
77. A. M. Awad, P. Kumar, M. R. Ismail-Fitry, S. Jusoh, M. F. Ab Aziz and A. Q. Sazili, Green extraction of bioactive compounds from plant biomass and their application in flesh as natural antioxidant, Antioxidants, 2021, 10(9), 1465.
78. G. J. Fadimu, K. Ghafoor, E. E. Babiker, F. Al-Juhaimi, R. A. Abdulraheem and M. K. Adenekan, Ultrasound-assisted process for optimal recovery of phenolic compounds from watermelon (Citrullus lanatus) seed and peel, J. Food Meas. Charact., 2020, 14, 1784–1793 .
79. S. Zamuz, P. E. Munekata, B. Gullón, G. Rocchetti, D. Montesano and J. M. Lorenzo, Citrullus lanatus as source of bioactive components: An up-to-date review, Trends Food Sci. Technol., 2021, 111, 208–222.
80. D. Panda and S. Manickam, Cavitation technology—The future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives, Appl. Sci., 2019, 9(4), 766 .
81. B. R. Sumere, M. C. de Souza, M. P. Dos Santos, R. M. Bezerra, D. T. da Cunha, J. Martinez and M. A. Rostagno, Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.), Ultrason. Sonochem., 2018, 48, 151–162.
82. B. R. Sumere, M. C. de Souza, M. P. Dos Santos, R. M. Bezerra, D. T. da Cunha, J. Martinez and M. A. Rostagno, Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.), Ultrason. Sonochem., 2018, 48, 151–162.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.