Volume 8, Issue 1 (1-2026)                   pbp 2026, 8(1): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Isah M. Evaluating Antagonistic Inhibitory Effect of Some Antibiotic–Silver Nanoparticle Combinations. pbp 2026; 8 (1)
URL: http://pbp.medilam.ac.ir/article-1-341-en.html
1. Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia2. Department of Biochemistry and Molecular Biology, Sokoto State University, Birnin Kebbi Rd, Sokoto 852101, Sokoto, Nigeria , imustapha@graduate.utm.my
Abstract:   (85 Views)
Background: This study reports on the green synthesis of silver nanoparticles (AgNPs) using Moringa oleifera leaf extract as a natural reducing and stabilizing agent. The synthesized AgNPs were comprehensively characterized by UV–visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and zeta potential (ZP) analysis.
Method: AgNPs was synthesized through green approach using M. oleifera leaves extract as the source of reducing and stabilizing agent followed by its combination with some selected antibiotics and assess their inhibition modes.
Objective: To determine the antibacterial mode of inhibition of AgNPs upon combination with antibiotics.
Result: The characterization confirmed the formation of uniformly distributed, spherical AgNPs with an average diameter of ~20 nm and a negative surface charge of –27.1 mV, indicating a high colloidal stability. To investigate their biomedical relevance, AgNPs were combined with conventional antibiotics via an imbibition method and tested against Staphylococcus aureus (S. aureus), methicillin-resistant S. aureus (MRSA), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa) using the Disc diffusion test (DDT).
 Conclusion: The results showed different antibacterial responses, with certain AgNPs–antibiotic combinations exhibiting synergistic enhancement of inhibition zones, while others showed antagonistic interactions. These results highlight the potential of M. oleifera-mediated AgNPs as an environmentally friendly nanomaterial to enhance antibiotic activity but also emphasize the need for critical evaluation of nanoparticle–drug interactions prior to clinical application.

 
     
Type of Study: Research | Subject: Green Chemistry
Received: 2025/08/25 | Accepted: 2025/09/4 | Published: 2025/12/1

References
1. Alara JA, Alara OR. An overview of the global alarming increase of multiple drug resistant: a major challenge in clinical diagnosis. Infect Disord Drug Targets. 2024;24(3):26-42. doi:10.2174/1871526523666230725103902
2. Sinha S, Upadhyay LSB. Understanding antimicrobial resistance (AMR) mechanisms and advancements in AMR diagnostics. Diagn Microbiol Infect Dis. 2025;116949. doi:10.1016/j.diagmicrobio.2025.116949
3. Sonkar V, Devtalla H, Kumar S. Pesticide-driven antimicrobial resistance in water bodies: insights on environmental concerns, health implications and mitigation strategies. Environ Geochem Health. 2025;47(7):282. doi:10.1007/s10653-025-02600-y
4. Ehsan H, Wardak FR, Karimi H, Kamal F, Aminpoor H, Salam A, et al. Comprehensive narrative analysis of antimicrobial resistance in Afghanistan: key drivers, challenges, and strategic interventions. J Health Popul Nutr. 2025;44(1):265. doi:10.1186/s41043-025-00909-z
5. Isah M, Malek NAN, Susanto H, Asraf MH, Matmin J. Determination of essential factors affecting silver nanoparticle synthesis using Moringa oleifera leaves. BIO Web Conf. 2024;117:01005. doi:10.1051/bioconf/202411701005
6. Do HTT, Nguyen NPU, Saeed SI, Dang NT, Doan L, Nguyen TTH. Advances in silver nanoparticles: unraveling biological activities, mechanisms of action, and toxicity. Appl Nanosci. 2025;15(1):1. doi:10.1007/s13204-024-03076-5
7. Nemčeková K, Dudoňová P, Holka T, Balážová S, Hornychová M, Szebellaiová V, et al. Silver nanoparticles for biosensing and drug delivery: a mechanical study on DNA interaction. Biosensors. 2025;15(5):331. Available from: https://www.mdpi.com/2079-6374/15/5/331
8. Hadi AA, Malek NAN, Matmin J, Asraf MH, Susanto H, Din SM, et al. Synergistic antibacterial effect of Persicaria odorata synthesised silver nanoparticles with antibiotics on drug-resistant bacteria. Inorg Chem Commun. 2024;159:111725. doi:10.1016/j.inoche.2023.111725
9. Thamilselvan V, Balu S, Ganapathy D, Atchudan R, Arya S, Hazra S, et al. Utilization of biomass waste derived carbon quantum dots intercalated ZnO for effective photocatalytic degradation of methylene blue. Results Surf Interfaces. 2025;19:100520. doi:10.1016/j.rsurfi.2025.100520
10. Garg S, Patel P, Gupta GD, Kurmi BD. Pharmaceutical applications and advances with zetasizer: an essential analytical tool for size and zeta potential analysis. Micro Nanosyst. 2024;16(3):139-154. doi:10.2174/0118764029301470240603051432
11. Yoon H, Kim S, Kim HY. Modulating localized surface plasmon resonance through metal composition and nanoparticle shape: implications for solar cell applications. Mater Sci Semicond Process. 2025;197:109677. doi:10.1016/j.mssp.2025.109677
12. Shamsoddini SM, Davoudi M, Shahbazi S, Karizi SZ. Green synthesis of silver nanoparticles using Acroptilon repens aqueous extract and their antibacterial efficacy against multidrug-resistant Acinetobacter baumannii. Mol Biol Rep. 2025;52(1):47. doi:10.1007/s11033-024-10156-w
13. Shahzadi S, Fatima S, Shafiq Z, Janjua MRSA. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv. 2025;15(5):3858-3903. doi:10.1039/D4RA07519F
14. Ifijen IH, Awoyemi RF, Faderin E, Akobundu UU, Ajayi AS, Chukwu JU, et al. Protein-based nanoparticles for antimicrobial and cancer therapy: implications for public health. RSC Adv. 2025;15(19):14966-15016. doi:10.1039/D5RA01427A
15. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol. 2015;99(11):4579-4593. doi:10.1007/s00253-015-6622-1
16. Al-Momani H, Albalawi H, Al Balawi D, Khleifat KM, Aolymat I, Hamed S, et al. Enhanced efficacy of some antibiotics in the presence of silver nanoparticles against clinical isolate of Pseudomonas aeruginosa recovered from cystic fibrosis patients. Int J Nanomedicine. 2024;12461-12481. doi:10.2147/IJN.S479937
17. Haji SH, Ali FA, Aka STH. Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Sci Rep. 2022;12(1):15254. doi:10.1038/s41598-022-19698-0
18. Dove AS, Dzurny DI, Dees WR, Qin N, Nunez Rodriguez CC, Alt LA, et al. Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria. Front Microbiol. 2023;13:1064095. doi:10.3389/fmicb.2022.1064095
19. Pietsch F, Heidrich G, Nordholt N, Schreiber F. Prevalent synergy and antagonism among antibiotics and biocides in Pseudomonas aeruginosa. Front Microbiol. 2021;11:615618. doi:10.3389/fmicb.2020.615618

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.