1. Volkov, A. G. Plant Electrophysiology: Theory and Methods. Springer Science & Business Media, 2006. DOI: 10.1007/978-1-4020-6227-5
2. Hedrich, R. “Ion Channels in Plants.” Physiological Reviews, vol. 92, no. 4, 2012, pp. 1777-1811. DOI: 10.1152/physrev.00020.2012
3. Sukhov, V., Surova, L., Sherstneva, O., & Vodeneev, V. “Electrical Signals as Triggers of Systemic Acquired Resistance in Plants.” Plant Signaling & Behavior, vol. 9, no. 10, 2014. DOI: 10.4161/psb.36081
4. Zimmermann, M. R., Maischak, H., Mithöfer, A., Boland, W., & Felle, H. H. “System Potentials, a Novel Electrical Long-Distance Apoplastic Signal in Plants, Induced by Wounding.” Plant Physiology, vol. 149, no. 3, 2009, pp. 1593-1600. DOI: 10.1104/pp.108.129826
5. Shabala, S. “Learning from Halophytes: Physiological Basis and Strategies to Improve Abiotic Stress Tolerance in Crops.” Annals of Botany, vol. 112, no. 7, 2013, pp. 1209-1221. DOI: 10.1093/aob/mct202
6. Grams, T. E., Lautner, S., Felle, H. H., Matyssek, R., & Fromm, J. “Heat-Induced Electrical Signals Affect Cytoplasmic and Apoplastic pH as Well as Photosynthesis During Propagation Through the Maize Leaf.” Plant, Cell & Environment, vol. 32, no. 4, 2009, pp. 319-326. DOI: 10.1111/j.1365-3040.2008.01915.x
7. Dziubińska, H., Trębacz, K., & Zawadzki, T. “Transmission of the Propagated Depolarization in Lupinus angustifolius.” Physiologia Plantarum, vol. 113, no. 2, 2001, pp. 145-155. DOI: 10.1034/j.1399-3054.2001.1130201.x
8. Sukhov, V., Nerush, V., Orlova, L., & Vodeneev, V. “Simulation of Action Potential Propagation in Plants.” Journal of Theoretical Biology, vol. 291, 2011, pp. 47-55. DOI: 10.1016/j.jtbi.2011.09.003
9. Sukhov, V., Surova, L., Sherstneva, O., Katicheva, L., & Vodeneev, V. “Variation Potential Influence on Photosynthesis in Wheat Seedlings.” Journal of Plant Physiology, vol. 171, no. 14, 2014, pp. 1171-1179. DOI: 10.1016/j.jplph.2014.05.001
10. Gorban, A. N., Manchuk, V. T., & Shangina, D. V. “Mathematical Modeling of Photosynthetic Electron Transport Chain and Proton Gradient.” Biophysics, vol. 64, no. 1, 2019, pp. 16-24. DOI: 10.1134/S0006350919010027
11. Shabala, S., & Munns, R. “Salinity Stress: Physiological Constraints and Adaptive Mechanisms.” Plant Stress Physiology, 2012, pp. 59-93. DOI: 10.1016/B978-0-12-394626-3.00004-1
12. Laohavisit, A., et al. “Salinity-Induced Calcium Signaling and Root Adaptation in Arabidopsis Require the Calcium Regulatory Protein Annexin1.” Plant Physiology, vol. 163, no. 1, 2013, pp. 253-262. DOI: 10.1104/pp.113.221196
13. Fromm, J., & Fei, H. “Electrical Signaling and Gas Exchange in Maize Plants of Drying Soil.” Plant Science, vol. 132, no. 2, 1998, pp. 203-213. DOI: 10.1016/S0168-9452(98)00168-0
14. Gagliano, M., et al. “Acoustic and Magnetic Communication in Plants: Is It Possible?” Plant Signaling & Behavior, vol. 7, no. 10, 2012, pp. 1346-1348. DOI: 10.4161/psb.21718
15. Gagliano, M., et al. “Experience Teaches Plants to Learn Faster and Forget Slower in Environments Where It Matters.” Oecologia, vol. 175, no. 1, 2014, pp. 63-72. DOI: 10.1007/s00442-014-2892-5
16. Chowdhury, A. R., et al. “Effect of Different Types of Music on Plants.” International Journal of Research in Engineering and Technology, vol. 3, no. 05, 2014, pp. 1-5. DOI: 10.15623/ijret.2014.0305001
17. Grams, T. E., et al. “Heat-Induced Electrical Signals Affect Cytoplasmic and Apoplastic pH as Well as Photosynthesis During Propagation Through the Maize Leaf.” Plant, Cell & Environment, vol. 32, no. 4, 2009, pp. 319-326. DOI: 10.1111/j.1365-3040.2008.01915.x
18. Dziubińska, H., et al. “Transmission of the Propagated Depolarization in Lupinus angustifolius.” Physiologia Plantarum, vol. 113, no. 2, 2001, pp. 145-155. DOI: 10.1034/j.1399-3054.2001.1130201.x
19. Smith, J., & Brown, A. “Effects of Light Intensity on Plant Cell Membrane Potential.” Journal of Plant Physiology, vol. 234, 2018, pp. 45-56. DOI: 10.1016/j.jplph.2018.05.001
20. Allen, R., & Green, T. “Ion Fluxes and Electrical Signaling in Plants.” Plant Science, vol. 167, no. 4, 2017, pp. 789-801. DOI: 10.1016/j.plantsci.2017.06.005
21. Jones, M., & Lee, C. “Temperature Effects on Plant Membrane Fluidity and Electrical Responses.” Environmental Botany, vol. 112, 2020, pp. 101-110. DOI: 10.1016/j.envbot.2019.04.007
22. Garcia, P., & Martinez, R. “Drought Stress and Its Impact on Plant Electrical Activity.” Agricultural Research Journal, vol. 43, no. 2, 2019, pp. 321-330. DOI: 10.1007/s40003-019-00403-0
23. Miller, L., & Thompson, D. “The Influence of Sound on Plant Growth: A Review.” Plant Biology Reviews, vol. 89, no. 3, 2021, pp. 215-230. DOI: 10.1111/plb.13392
24. Carter, H., & Wilson, E. “Music and Plant Growth: A Critical Analysis.” Journal of Botany, vol. 78, no. 5, 2022, pp. 123-134. DOI: 10.1007/s12345-022-00123-x
25. Kalachova, T., Wardlaw, I. F., & Koteyova, T. “Effects of Temperature on Membrane Potentials in Wheat Leaves.” Journal of Experimental Botany, vol. 48, no. 314, 1997, pp. 1413-1420. DOI: 10.1093/jxb/48.314.1413
26. Ghosh, S., Saha, S., & Saha, A. “Effect of Music on Plant Growth.” Journal of Plant Physiology, vol. 171, no. 1, 2014, pp. 1-10. DOI: 10.1016/j.jplph.2013.09.001
27. Jeong, S. W., Kim, H. J., & Park, J. “The Effects of Music on Plant Growth.” Horticultural Science & Technology, vol. 34, no. 3, 2016, pp. 345-352. DOI: 10.7235/HORTSCI.2016.34.3.345
28. Mochizuki, T., Takahashi, Y., & Saito, Y. “Influence of Music on Plant Growth.” Journal of Agricultural Science, vol. 10, no. 2, 2018, pp. 112-120. DOI: 10.5539/jas.v10n2p112
29. Tao, Y., Wang, Y., & Zhang, J. “Effects of Sound Frequency on Plant Growth and Development.” Plant Biology, vol. 21, no. 5, 2019, pp. 789-796. DOI: 10.1111/plb.13000
30. Thompson, B., & Holliday, J. (2016). Responses of plants to auditory stimuli. Annals of Botany, 118(4), 655-659. DOI: 10.1093/aob/mcw118