logo
Volume 7 -                   pbp 2025, 7 - : 0-0 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Etminani F, Etminani A, Fazeli-Nasab B. Bioinformatic Study of the Antiviral Properties of Thyme and Eucalyptus Against the Coat Protein of Mimosa Yellow Vein Virus. pbp 2025; 7 (In press)
URL: http://pbp.medilam.ac.ir/article-1-305-en.html
1- Department of Plant Production, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
2- Young Researchers and Elite Clubs, Sanandaj Branch, Islamic Azad University of Sanandaj, Sanandaj, Iran
3- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran , bfazelinasab@gmail.com
Abstract:   (122 Views)
Objective: The Geminiviridae family comprises significant plant pathogens causing severe economic losses worldwide. Among them, Begomovirus species, like Mimosa yellow leaf curl virus (MiYLCV), threaten crops and ornamental plants. Natural compounds, such as thyme and eucalyptus essential oils, may offer antiviral solutions. This study investigates the inhibitory potential of thyme and eucalyptus essential oils against MiYLCV coat protein using molecular docking, providing insights into eco-friendly antiviral strategies.
Methods:  In this study, first, the three-dimensional structure of phytochemical compounds present in the two medicinal plants, Thymus vulgaris and Eucalyptus grandis, was obtained from the PubChem database. Next, the three-dimensional structure of the virus coat protein was optimized using the Swiss-MODEL online tool. The ability of the selected chemical compounds to inhibit the coat protein associated with pathogen virulence was explored using the molecular docking method using the specialized software autodock4.2.6.
Results: Phylogenetic analysis of Mimosa yellow vein virus coat protein revealed close relationships between some Begomovirus sequences (e.g., NP_808548.1 and NP_803540.1), while others (YP_00358491.1, ADW83758.1) showed divergence. The 3D protein model exhibited stable Ramachandran plot angles. Among thyme compounds, β-Myrcene had the highest permeability (logP=2.89), while γ-Terpinene showed the highest solubility (logS=-3.45). In eucalyptus, Isoamyl isovalerate (logP=3.05) and alpha-Terpinene (logS=-3.30) exhibited extreme values. Molecular docking identified strong binding interactions: Endo-borneol (-4.75 kcal/mol), α-Terpineol (-4.96 kcal/mol), and Terpinen-4-ol (-4.78 kcal/mol) from thyme, and beta-Terpineol (-5.14 kcal/mol), trans-Carveol (-5.15 kcal/mol), and Carvotanacetone (-5.21 kcal/mol) from eucalyptus exhibited the highest affinity for the viral coat protein. These findings suggest potential antiviral activity against Mimosa yellow vein virus.
Conclusion: The results revealed that the combination of a-Terpineol and Carvotanacetone act as the strongest binding molecules in thyme and eucalyptus plants, respectively. These compounds can be proposed as potent antagonists targeting the coat protein of Mimosa yellow vein virus, effectively impeding its function.

     
Type of Study: Research | Subject: Biotechnology
Received: 2025/05/24 | Accepted: 2025/06/2 | Published: 2025/12/1

References
1. Ha C, Coombs S, Revill P, Harding R, Vu M, Dale J. Molecular characterization of begomoviruses and DNA satellites from Vietnam: additional evidence that the New World geminiviruses were present in the Old World prior to continental separation. J Gen Virol. 2008;89(1):312–26. doi:10.1099/vir.0.83236-0.
2. Rodríguez-Pardina PE, Zerbini FM, Ducasse DA. Genetic diversity of begomoviruses infecting soybean, bean and associated weeds in Northwestern Argentina. Fitopatol Bras. 2006;31:342–8. doi:10.1590/S0100-41582006000400003.
3. Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, et al. Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch Virol. 2017;162:1819–31. doi:10.1007/s00705-017-3268-6.
4. Liang P, Navarro B, Zhang Z, Wang H, Lu M, Xiao H, et al. Identification and characterization of a novel geminivirus with a monopartite genome infecting apple trees. J Gen Virol. 2015;96(8):2411–20. doi:10.1099/vir.0.000173.
5. Loconsole G, Saldarelli P, Doddapaneni H, Savino V, Martelli GP, Saponari M. Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member in the family Geminiviridae. Virology. 2012;432(1):162–72. doi:10.1016/j.virol.2012.06.005.
6. Morales FJ, Anderson PK. The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Arch Virol. 2001;146:415–41. doi:10.1007/s007050170153.
7. Malayeri FA, Yazdanpour Z, Bandani H, Fazeli-Nasab B, Saeidi S. Antimicrobial and anti-biofilm effects of thyme essential oils and peppermint on Acinetobacter baumannii and Staphylococcus aureus resistant to different antibiotics. New Find Vet Microbiol. 2020;2(2):41–51. doi:10.35066/j040.2019.697.
8. Fazeli-Nasab B. Biological evaluation of coronaviruses and the study of molecular docking, linalool, and thymol as orf1ab protein inhibitors and the role of SARS-CoV-2 virus in bioterrorism. J Ilam Univ Med Sci. 2021;28(6):77–96. doi:10.29252/sjimu.28.6.77.
9. Nayagam MC, Pushparaj M. 'Touch me not': a medicinal plant of the Nilgiri tribals - a study. J Econ Taxon Bot. 1999;23:417–20.
10. Unseld S, Höhnle M, Ringel M, Frischmuth T. Subcellular targeting of the coat protein of African cassava mosaic geminivirus. Virology. 2001;286(2):373–83. doi:10.1006/viro.2001.1003.
11. Fazeli-Nasab B, Rossello JA, Mokhtarpour A. Effect of TiO2 nanoparticles in thyme under reduced irrigation conditions. Potravin Slovak J Food Sci. 2018;12(1):622–7. doi:10.5219/958.
12. Fazeli-Nasab B, Ghafari M, Jahantigh M, Beigomi Z, Saeidi S. Evaluation of phenolic and flavonoid content, alkaloids, antioxidant capacity and antibacterial properties of methanolic extract of Zahak native medicinal plants against seven pathogens. Int J Med Plants By-Prod. 2023;13(1):57–65. doi:10.22034/jmpb.2023.128540.
13. Tabin S, Gupta RC, Kamili AN, Parray JA. Medical and medicinal importance of Rheum spp. collected from different altitudes of the Kashmir Himalayan range. Cell Mol Biomed Rep. 2022;2(3):187–201. doi:10.55705/cmbr.2022.349901.1050.
14. Shanmugam G, Jeon J. Computer-aided drug discovery in plant pathology. Plant Pathol J. 2017;33(6):529. doi:10.5423/PPJ.RW.04.2017.0084.
15. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995;8(2):127–34. doi:10.1093/protein/8.2.127.
16. Prajapat R, Marwal A, Sahu A, Gaur R. Phylogenetics and in silico docking studies between coat protein of Mimosa yellow vein virus and whey α-lactalbumin. Am J Biochem Mol Biol. 2011;1(3):265–74. doi:10.3923/ajbmb.2011.265.274.
17. Ganjhu RK, Mudgal PP, Maity H, Dowarha D, Devadiga S, Nag S, et al. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease. 2015;26:225–36. doi:10.1007/s13337-015-0276-6.
18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. doi:10.1093/molbev/mst197.
19. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi:10.1002/jcc.20084.
20. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:17. doi:10.1186/1758-2946-4-17.
21. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. doi:10.1002/jcc.21256.
22. Naika HR, Lingaraju K, Chandramohan V, Krishna V. Evaluation of phytoconstituents and molecular docking against NS3 protease of hepatitis C virus. J Pharm Sci Pharmacol. 2015;2(2):96–103. doi:10.1166/jpsp.2015.1057.
23. Farahani M. Antiviral effect assay of Thymus kotschyanus and Nerium oleander on HSV-1 in vitro. J Shahid Sadoughi Univ Med Sci. 2013;21(2):189–97. Available from: http://jssu.ssu.ac.ir/article-1-2426-en.html.
24. Nolkemper S, Reichling J, Stintzing FC, Carle R, Schnitzler P. Antiviral effect of aqueous extracts from species of the Lamiaceae family against herpes simplex virus type 1 and type 2 in vitro. Planta Med. 2006;72(15):1378–82. doi:10.1055/s-2006-951719.
25. Karimi A, Moradi MT, Saedi M, Salimzadeh L, Rafieian M. The inhibitory effects of eucalyptus extract on herpes simplex virus-1 replication in baby hamster kidney cells. Qom Univ Med Sci J. 2012;6(1):3–8. doi:10.1001.1.17357799.1391.6.1.1.3.
26. Behravan J, Ramezani M, Nobandegani F, Gharaee M. Antiviral and antimicrobial activity of Thymus transcaspicus essential oil. Pharmacologyonline. 2011;1:1190–9.
27. Khosravi-Amin Z, Kohan-Baghkheirati E, Kheirabadi M. Identification of effective plant metabolites in inhibition of HTLV-1 virus protease using network analysis approach. Appl Biol. 2024;37(4):88–96. doi:10.22051/jab.2024.45009.1591.
28. Bagheri S, Fakheri BA, Ahadi AM, Emamjomeh A. Identification, cloning and bioinformatics analysis of the gene encoding NIa protein of wheat streak mosaic virus (WSMV). Crop Biotechnol. 2019;9(1):1–13. doi:10.30473/cb.2019.48896.1785.
29. Harrison BD, Swanson MM, Fargette D. Begomovirus coat protein: serology, variation and functions. Physiol Mol Plant Pathol. 2002;60(5):257–71. doi:10.1006/pmpp.2002.040

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.