logo
Volume 8, Issue 1 (1-2026)                   pbp 2026, 8(1): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nosrati F, Fakheri B A, Ghaznavi H, Mahdinezhad N, Sheervalilou R, Fazeli-Nasab B. Eco-Friendly Synthesis of Bioactive Silver Nanoparticles Using Astragalus fasciculifolius Extracts: Regional Phytochemical Variation and Biomedical Potential. pbp 2026; 8 (1)
URL: http://pbp.medilam.ac.ir/article-1-319-en.html
1- Department of Plant Breeding and biotechnology, Faculty of Agriculture, University of Zabol, 9861335856 Zabol, Iran
2- Pharmacology Research Center, Zahedan University of Medical Sciences, 9816743463 Zahedan, Iran
3- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran , bfazelinasab@gmail.com
Abstract:   (257 Views)
Introduction: Today, green synthesis of nanoparticles has been widely recognized as a promising strategy in the fields of material science and nanotechnology. In this study, Silver nanoparticles (AgNPs) were successfully synthesized using a highly efficient, cost-effective, and environmentally friendly process. The bioreduction process to yield AgNPs was carried out at room temperature using Anzaroot (Astragalus fasciculifolius Bioss) Root and gum Aqueous extracts.
Materials and methods: A. fasciculifolius gum and roots were collected from six locations in Sistan-Baluchestan Province (Table 1). Aqueous extracts were prepared (10g/100mL) and analyzed for total phenolics (Folin-Ciocalteu), flavonoids (AlCl3), and carbohydrates (phenol-sulfuric acid). Silver nanoparticles (AgNPs) were biosynthesized using 1, 3 and 5mM AgNO3 (1 mM was chosen as the best concentration) and characterized by UV-Vis, TEM, and XRD. Antioxidant (DPPH) and antimicrobial (MIC/MBC) activities were evaluated against four bacterial strains. GC-MS (Agilent 7890A) analysis was performed using an HP-5 MS column.
Results: GC-MS analysis revealed significant regional variations in A. fasciculifolius gum composition, with Khash samples dominated by aliphatic hydrocarbons (nonane, octane) and Sarava samples containing atypical pharmaceutical compounds (pilocarpine, gabapentin derivatives). Sarbaz gum exhibited unique nitrogenous compounds (17.52% urea derivative), suggesting environmental adaptations. ANOVA confirmed significant (p<0.01) location-dependent differences in phenolic content (32.41 mg GAE/g mean), with Poshtkuh showing maximum accumulation (42.61 mg GAE/g). Flavonoid content varied markedly (0–2.0 mg QE/g), while carbohydrate levels (366.93 mg GE/g mean) showed habitat-specific variations (p<0.01). Biosynthesized silver nanoparticles (AgNPs) from root/gum Aqueous extracts exhibited surface plasmon resonance (400–500 nm) and crystalline structure (XRD peaks at 38°, 43°, 64°, 77.3°). TEM revealed spherical AgNPs (5–50 nm), with gum-derived nanoparticles (23.29 nm) demonstrating superior DPPH radical scavenging (98.40% at 500 μg/mL) compared to root-derived counterparts (81.41%). Antimicrobial assays (400 μg/mL) highlighted enhanced Gram-negative inhibition by AgNPs (MIC 3.12–50 μg/mL), while crude extracts were more effective against Gram-positive strains. These findings underscore the ecological and pharmacological significance of A. fasciculifolius derivatives.
Conclusion: The study highlights A. fasciculifolius gum's diverse phytochemistry, regional variability, and bioactivity, with potential applications in antimicrobials, antioxidants, and nanomedicine, Bioactive AgNPs with antioxidant potent and Gram-selective antibacterial properties. Future research should explore environmental influences on compound synthesis, pharmacological mechanisms, and scalable AgNP production for therapeutic use.
     
Type of Study: Research | Subject: Herbal Drugs
Received: 2025/06/26 | Accepted: 2025/07/13 | Published: 2025/12/1

References
1. Shahdadi F, Khorasani S, Salehi-Sardoei A, Fallahnajmabadi F, Fazeli-Nasab B, Sayyed RZ. GC-MS profiling of Pistachio vera L., and effect of antioxidant and antimicrobial compounds of it's essential oil compared to chemical counterparts. Sci Rep. 2023;13(1):21694. doi:https://doi.org/10.1038/s41598-023-48844-5.
2. Javadian E, Biabangard A, Ghafari M, Saeeidi S, Fazeli-Nasab B. Green Synthesis of Silver Nanoparticles and Antibacterial Properties of Extracts of Capparis spinosa Leaves. Int J Med Plants By-Prod. 2024;13(2):329-43. doi:https://doi.org/10.22034/jmpb.2023.361363.1528.
3. Alavi M, Hamblin MR, Aghaie E, Mousavi SAR, Hajimolaali M. Antibacterial and antioxidant activity of catechin, gallic acid, and epigallocatechin-3-gallate: focus on nanoformulations. Cell Mol Biomed Rep. 2023;3(2):62-72. doi:Https://doi.org/10.55705/cmbr.2022.353962.1052.
4. Saravani S, Ghaffari M, Aali H. Hydroalcoholic extract of Psidium guajava plant and bone marrow cells: examination and analysis of effects. Cell Mol Biomed Rep. 2024;4(3):177-1888. doi:https://doi.org/10.55705/cmbr.2024.428153.1213.
5. Saravani K, Akbari ME, Akbari MM, Fazeli-Nasab B. The Protective Effect of Hydro-alcoholic Extracts of Cactus Fruit (Opuntia dillenii (Ker Gawl.) Haw.) and Star Fruit (Averrhoa carambola L.) on Histological Changes Induced by Cadmium Chloride in Lungs of Male Wistar Rats. Int J Med Plants By-Prod. 2023;12(3):267-74. doi:https://doi.org/10.22092/jmpb.2022.356472.1421.
6. Daneshmand S, Niazi M, Fazeli-Nasab B, Asili J, Golmohammadzadeh S, Sayyed RZ. Solid Lipid Nanoparticles of Platycladus orientalis L. possessing 5-alpha Reductase Inhibiting Activity for Treating Hair Loss and Hirsutism. Int J Med Plants By-Prod. 2023;13(1):233-46. doi:https://doi.org/10.22034/jmpb.2023.364389.1634.
7. 7. Taha ZK, Hawar SN, Sulaiman GM. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol Letters. 2019;41:899-914. doi:https://doi.org/10.1007/s10529-019-02699-x.
8. Karnani RL, Chowdhary A. Biosynthesis of silver nanoparticle by eco-friendly method. Int J Nanosci. 2013;1(1):25-31.
9. Chaudhary LB, Rana TS, Anand KK. Current status of the systematics of Astragalus L.(Fabaceae) with special reference to the Himalayan species in India. Taiwania. 2008;53(4):338-55.
10. 10. Zarre S, Azani N. Perspectives in taxonomy and phylogeny of the genus Astragalus (Fabaceae): a review. PBioSci. 2013;3(1):1-6.
11. Li X, Qu L, Dong Y, Han L, Liu E, Fang S, et al. A Review of Recent Research Progress on the Astragalus Genus. Molecules. 2014;19(11):18850-80. doi:https://doi.org/10.3390/molecules191118850. [PubMed:doi:10.3390/molecules191118850].
12. Huang C, Xu D, Xia Q, Wang P, Rong C, Su Y. Reversal of P-glycoprotein-mediated multidrug resistance of human hepatic cancer cells by Astragaloside II. J Pharm Pharmacol. 2012;64(12):1741-50. doi:https://doi.org/10.1111/j.2042-7158.2012.01549.x.
13. Lu J, Chen X, Zhang Y, Xu J, Zhang L, Li Z, et al. Astragalus polysaccharide induces anti-inflammatory effects dependent on AMPK activity in palmitate-treated RAW264. 7 cells. Int J Mol Med. 2013;31(6):1463-70. doi:https://doi.org/10.3892/ijmm.2013.1335.
14. Benchadi W, Haba H, Lavaud C, Harakat D, Benkhaled M. Secondary metabolites of Astragalus cruciatus Link. and their chemotaxonomic significance. Rec Nat Prod. 2013;7(2):105-13.
15. Linnek J, Mitaine‐Offer AC, Miyamoto T, Tanaka C, Paululat T, Avunduk S, et al. Cycloartane glycosides from three species of Astragalus (Fabaceae). Helvetica Chimica Acta. 2011;94(2):230-7. doi:https://doi.org/10.1002/hlca.201000157.
16. El-Rafie M, El-Naggar M, Ramadan M, Fouda MM, Al-Deyab SS, Hebeish A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydrate Polymers. 2011;86(2):630-5.
17. Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z, et al. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS nano. 2011;5(12):9788-98.
18. Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces. 2013;101:430-3.
19. Qu M, Zhang X, Liu G, Huang Y, Jia L, Liang W, et al. An eight-year study of Shigella species in Beijing, China: serodiversity, virulence genes, and antimicrobial resistance. J Infect Dev Ctries 2014;8(07):904-8. doi:10.3855/jidc.3692.
20. Chang C-C, Yang M-H, Wen H-M, Chern J-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis. 2002;10(3):178-82.
21. McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chemistry. 2001;73(1):73-84. doi:https://doi.org/10.1016/S0308-8146(00)00288-0.
22. Rover MR, Johnston PA, Lamsal BP, Brown RC. Total water-soluble sugars quantification in bio-oil using the phenol–sulfuric acid assay. Journal of Analytical and Applied Pyrolysis. 2013;104:194-201. doi:https://doi.org/10.1016/j.jaap.2013.08.004.
23. Yue F, Zhang J, Xu J, Niu T, Lü X, Liu M. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Frontiers in nutrition. 2022;9:963318. doi:https://doi.org/10.3389/fnut.2022.963318.
24. Shamspur T, Sheikhshoaie I, Afzali D, Mostafavi A, Mirtadzadini S. Chemical Compositions of Salix aegyptiaca L. Obtained by Simultaneous Hydrodistilation and Extraction. J Essent Oil-Bear Plants. 2011;14(5):543-8. doi:https://doi.org/10.1080/0972060X.2011.10643971.
25. Zarnowski R, Suzuki Y. Expedient Soxhlet extraction of resorcinolic lipids from wheat grains. J Food Compos Anal. 2004;17(5):649-63. doi:https://doi.org/10.1016/j.jfca.2003.09.007.
26. Mamidipally PK, Liu SX. First approach on rice bran oil extraction using limonene. Eur J Lipid Sci Technol. 2004;106(2):122-5. doi:https://doi.org/10.1002/ejlt.200300891.
27. Morton JF. Fruits of warm climates. JF Morton; 1987. p. 517 Pages.
28. Verma K, Shrivastava D, Kumar G. Antioxidant activity and DNA damage inhibition in vitro by a methanolic extract of Carissa carandas (Apocynaceae) leaves. Journal of Taibah University for science. 2015;9(1):34-40.
29. Dastafkan K, Khajeh M, Bohlooli M, Ghaffari-Moghaddam M, Sheibani N. Mechanism and behavior of silver nanoparticles in aqueous medium as adsorbent. Talanta. 2015;144:1377-86.
30. Amendola V, Bakr OM, Stellacci F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics. 2010;5:85-97.
31. Mikhailova EO. Silver nanoparticles: Mechanism of action and probable bio-application. Journal of functional biomaterials. 2020;11(4):84.
32. Ma Y, Liu C, Qu D, Chen Y, Huang M, Liu Y. Antibacterial evaluation of sliver nanoparticles synthesized by polysaccharides from Astragalus membranaceus roots. Biomedicine & Pharmacotherapy. 2017;89:351-7.
33. Sharifi-Rad M, Pohl P, Epifano F, Álvarez-Suarez JM. Green synthesis of silver nanoparticles using Astragalus tribuloides delile. root extract: Characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials. 2020;10(12):2383. doi:https://doi.org/10.3390/nano10122383.
34. Zare-Bidaki M, Aramjoo H, Mizwari ZM, Mohammadparast-Tabas P, Javanshir R, Mortazavi-Derazkola S. Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract. Arab J Chem. 2022;15(6):103842. doi:https://doi.org/10.1016/j.arabjc.2022.103842.
35. Kiani Z, Aramjoo H, Chamani E, Siami-Aliabad M, Mortazavi-Derazkola S. In vitro cytotoxicity against K562 tumor cell line, antibacterial, antioxidant, antifungal and catalytic activities of biosynthesized silver nanoparticles using Sophora pachycarpa extract. Arab J Chem. 2022;15(3):103677. doi:https://doi.org/10.1016/j.arabjc.2021.103677.
36. Lim D-H, Choi D, Choi O-Y, Cho K-A, Kim R, Choi H-S, et al. Effect of Astragalus sinicus L. seed extract on antioxidant activity. J Ind Eng Chem. 2011;17(3):510-6. doi:https://doi.org/10.1016/j.jiec.2011.02.040.
37. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol. 2003;67(4):593-656. doi:https://doi.org/10.1128/mmbr.67.4.593-656.2003.
38. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202. doi:https://doi.org/10.3390/ijms22137202.
39. Alrumman SA, Moustafa MF, Alamri SA. Anti-bacterial and anti-fungal investigation of Astragalus atropilosulus subsp. abyssinicus. Afr J Microbiol Res. 2012;6(34):6365-9. doi:https://doi.oerg/10.5897/AJMR12.778.
40. Askari Z, Vahabi MR, Allafchian A, Mousavi SA, Jalali SAH. Biosynthesis of antibacterial silver nanoparticles using Astragalus verus Olivier. Micro & Nano Letters. 2020;15(2):66-71. doi:https://doi.org/10.1049/mnl.2019.0306.
41. Abd El Aty AA, Alshammari SO, Alharbi RM, Soliman AA. Astragalus sarcocolla Gum-mediated a Novel Green-synthesis of Biologically Active Silver-Nanoparticles with Effective Anticancer and Antimicrobial activities. Jordan J Biol Sci. 2023;16(1):41-53. doi:https://doi.org/10.54319/jjbs/160107.
42. Gad HA, Mamadalieva NZ, Böhmdorfer S, Rosenau T, Zengin G, Mamadalieva RZ, et al. GC-MS based identification of the volatile components of six Astragalus species from Uzbekistan and their biological activity. Plants. 2021;10(1):124. doi:https://doi.org/10.3390/plants10010124.
43. Movafeghi A, Djozan D, Razeghi J, Baheri T. Identification of volatile organic compounds in leaves, roots and gum of Astragalus compactus Lam. using solid phase microextraction followed by GC-MS analysis. Natural Product Research. 2010;24(8):703-9. doi:https://doi.org/10.1080/14786410802361446.
44. Shamspur T, Motasadizadeh H. Extraction chemical composition in the gum tragacanth of Astragalus calliphysa bge by soxhelt and identification composition using GC/MS. J Sep Sci. 2015;7(1):55-62. doi:https://doi.org/10.22103/jsse.2015.871.
45. Wang Y, Liu J, Li N, Shi G, Jiang G, Ma W. Preliminary study of the retention behavior for different compounds using cryogenic chromatography at different initial temperatures. Microchemical Journal. 2005;81(2):184-90. doi:https://doi.org/10.1016/j.microc.2005.02.003.
46. Wang J-R, Wu X-Y, Cui C-B, Bi J-F. Effect of osmotic dehydration combined with vacuum freeze-drying treatment on characteristic aroma components of peach slices. Food Chemistry: X. 2024;22:101337. doi:https://doi.org/10.1016/j.fochx.2024.101337.
47. Koutek B, Fulem M, Mahnel Ts, Šimáček P, Růžička Kt. Extracting Vapor Pressure Data from Gas–Liquid Chromatography Retention Times. Part 2: Analysis of Double Reference Approach. Journal of Chemical & Engineering Data. 2018;63(12):4649-61. doi:https://doi.org/10.1021/ACS.JCED.8B00699.
48. Khrisanfov MD, Matyushin DD, Samokhin AS. A general procedure for finding potentially erroneous entries in the database of retention indices. Anal Chim Acta. 2024;1297:342375. doi:10.1016/j.aca.2024.342375. [PubMed:38438243].
49. Yang X, Li C, Qi M, Qu L. Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers. J Chromatogr A. 2016;1460:173-80. doi:10.1016/j.chroma.2016.07.029. [PubMed:27423773].
50. Islam M, Hossain A, Yamari I, Abchir O, Chtita S, Ali F, et al. Synthesis, Antimicrobial, Molecular Docking Against Bacterial and Fungal Proteins and In Silico Studies of Glucopyranoside Derivatives as Potent Antimicrobial Agents. Chem Biodivers. 2024;21(9):e202400932. doi:10.1002/cbdv.202400932. [PubMed:38949892].
51. Huang G, Cierpicki T, Grembecka J. Thioamides in medicinal chemistry and as small molecule therapeutic agents. Eur J Med Chem. 2024;277:116732. doi:10.1016/j.ejmech.2024.116732. [PubMed:39106658].
52. Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther. 2023;8(1):199. doi:10.1038/s41392-023-01440-5. [PubMed:37169742].
53. Hassanpouraghdam MB, Ghorbani H, Esmaeilpour M, Alford MH, Strzemski M, Dresler S. Diversity and Distribution Patterns of Endemic Medicinal and Aromatic Plants of Iran: Implications for Conservation and Habitat Management. Int J Environ Res Public Health. 2022;19(3):1552. doi:https://doi.org/10.3390/ijerph19031552. [PubMed:doi:10.3390/ijerph19031552].
54. 54. Ghasemian-Yadegari J, Hamedeyazdan S, Nazemiyeh H, Fathiazad F. Evaluation of Phytochemical, Antioxidant and Antibacterial Activity on Astragalus Chrysostachys Boiss. Roots. Iran J Pharm Res. 2019;18(4):1902-11. doi:https://doi.org/10.22037%2Fijpr.2019.1100855. [PubMed:32184856].

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.