logo
Volume 8 - Early Access                   pbp 2026, 8 - Early Access: 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nosrati F, Fakheri B A, Ghaznavi H, Mahdinezhad N, Sheervalilou R, Fazeli-Nasab B. Eco-Friendly Synthesis of Bioactive Silver Nanoparticles Using Astragalus fasciculifolius Extracts: Regional Phytochemical Variation and Biomedical Potential. pbp 2026; 8
URL: http://pbp.medilam.ac.ir/article-1-319-en.html
1- Department of Plant Breeding and biotechnology, Faculty of Agriculture, University of Zabol, 9861335856 Zabol, Iran
2- Pharmacology Research Center, Zahedan University of Medical Sciences, 9816743463 Zahedan, Iran
3- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran , bfazelinasab@gmail.com
Abstract:   (388 Views)
Objective: Green synthesis of nanoparticles has emerged as a promising strategy in material science and nanotechnology. In this study, silver nanoparticles (AgNPs) were synthesized through a cost-effective, environmentally friendly, and highly efficient process. Bioreduction was carried out at room temperature using aqueous root and gum extracts of Anzaroot (Astragalus fasciculifolius Bioss).
Methods: Roots and gum of A. fasciculifolius were collected from six locations in Sistan–Baluchestan Province (Table 1). Aqueous extracts (10 g/100 mL) were prepared and analyzed for total phenolics (Folin–Ciocalteu), flavonoids (AlCl₃), and carbohydrates (phenol–sulfuric acid). AgNPs were biosynthesized using 1, 3, and 5 mM AgNO₃ solutions, with 1 mM identified as optimal. Nanoparticles were characterized by UV–Vis spectroscopy, TEM, and XRD. Antioxidant activity (DPPH assay) and antimicrobial activity (MIC/MBC) were assessed against four bacterial strains. GC–MS (Agilent 7890A) was performed using an HP-5 MS column.
Results: GC–MS analysis revealed pronounced regional differences in gum composition: Khash samples were rich in aliphatic hydrocarbons, Sarava samples contained pharmaceutical-like compounds (pilocarpine, gabapentin derivatives), and Sarbaz gum showed unique nitrogenous constituents (17.52% urea derivatives), suggesting environmental adaptation. ANOVA indicated significant location-dependent differences (p<0.01) in phenolic content (mean 32.41 mg GAE/g), with Poshtkuh showing the highest accumulation (42.61 mg GAE/g). Flavonoids ranged from 0–2.0 mg QE/g, while carbohydrate levels (mean 366.93 mg GE/g) displayed habitat-specific variation (p<0.01). Biosynthesized AgNPs exhibited surface plasmon resonance at 400–500 nm and crystalline peaks at 38°, 43°, 64°, and 77.3° (XRD). TEM confirmed spherical AgNPs (5–50 nm), with gum-derived nanoparticles (23.29 nm) demonstrating superior DPPH scavenging (98.40% at 500 μg/mL) compared with root-derived AgNPs (81.41%). Antimicrobial assays (400 μg/mL) showed enhanced Gram-negative inhibition (MIC 3.12–50 μg/mL), whereas crude extracts were more active against Gram-positive strains.
Conclusion: This study highlights the diverse phytochemistry, regional variability, and bioactivity of A. fasciculifolius gum, underscoring its potential applications in antimicrobial, antioxidant, and nanomedicine research. The biosynthesized AgNPs demonstrated potent antioxidant and Gram-selective antibacterial properties. Further studies should investigate environmental drivers of metabolite production, elucidate pharmacological mechanisms, and develop scalable AgNP synthesis for therapeutic use.

Full-Text [PDF 770 kb]   (59 Downloads)    
Type of Study: Research | Subject: Herbal Drugs
Received: 2025/06/26 | Accepted: 2025/07/13 | Published: 2025/12/1

References
1. Shahdadi F, Khorasani S, Salehi-Sardoei A, Fallahnajmabadi F, Fazeli-Nasab B, Sayyed RZ. GC-MS profiling of Pistachio vera L., and effect of antioxidant and antimicrobial compounds of it's essential oil compared to chemical counterparts. Sci Rep. 2023;13(1):21694. doi:https://doi.org/10.1038/s41598-023-48844-5.
2. Javadian E, Biabangard A, Ghafari M, Saeeidi S, Fazeli-Nasab B. Green Synthesis of Silver Nanoparticles and Antibacterial Properties of Extracts of Capparis spinosa Leaves. Int J Med Plants By-Prod. 2024;13(2):329-43. doi:https://doi.org/10.22034/jmpb.2023.361363.1528.
3. Alavi M, Hamblin MR, Aghaie E, Mousavi SAR, Hajimolaali M. Antibacterial and antioxidant activity of catechin, gallic acid, and epigallocatechin-3-gallate: focus on nanoformulations. Cell Mol Biomed Rep. 2023;3(2):62-72. doi:Https://doi.org/10.55705/cmbr.2022.353962.1052.
4. Saravani S, Ghaffari M, Aali H. Hydroalcoholic extract of Psidium guajava plant and bone marrow cells: examination and analysis of effects. Cell Mol Biomed Rep. 2024;4(3):177-1888. doi:https://doi.org/10.55705/cmbr.2024.428153.1213.
5. Saravani K, Akbari ME, Akbari MM, Fazeli-Nasab B. The Protective Effect of Hydro-alcoholic Extracts of Cactus Fruit (Opuntia dillenii (Ker Gawl.) Haw.) and Star Fruit (Averrhoa carambola L.) on Histological Changes Induced by Cadmium Chloride in Lungs of Male Wistar Rats. Int J Med Plants By-Prod. 2023;12(3):267-74. doi:https://doi.org/10.22092/jmpb.2022.356472.1421.
6. Daneshmand S, Niazi M, Fazeli-Nasab B, Asili J, Golmohammadzadeh S, Sayyed RZ. Solid Lipid Nanoparticles of Platycladus orientalis L. possessing 5-alpha Reductase Inhibiting Activity for Treating Hair Loss and Hirsutism. Int J Med Plants By-Prod. 2023;13(1):233-46. doi:https://doi.org/10.22034/jmpb.2023.364389.1634.
7. 7. Taha ZK, Hawar SN, Sulaiman GM. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol Letters. 2019;41:899-914. doi:https://doi.org/10.1007/s10529-019-02699-x.
8. Karnani RL, Chowdhary A. Biosynthesis of silver nanoparticle by eco-friendly method. Int J Nanosci. 2013;1(1):25-31.
9. Chaudhary LB, Rana TS, Anand KK. Current status of the systematics of Astragalus L.(Fabaceae) with special reference to the Himalayan species in India. Taiwania. 2008;53(4):338-55.
10. 10. Zarre S, Azani N. Perspectives in taxonomy and phylogeny of the genus Astragalus (Fabaceae): a review. PBioSci. 2013;3(1):1-6.
11. Li X, Qu L, Dong Y, Han L, Liu E, Fang S, et al. A Review of Recent Research Progress on the Astragalus Genus. Molecules. 2014;19(11):18850-80. doi:https://doi.org/10.3390/molecules191118850. [PubMed:doi:10.3390/molecules191118850].
12. Huang C, Xu D, Xia Q, Wang P, Rong C, Su Y. Reversal of P-glycoprotein-mediated multidrug resistance of human hepatic cancer cells by Astragaloside II. J Pharm Pharmacol. 2012;64(12):1741-50. doi:https://doi.org/10.1111/j.2042-7158.2012.01549.x.
13. Lu J, Chen X, Zhang Y, Xu J, Zhang L, Li Z, et al. Astragalus polysaccharide induces anti-inflammatory effects dependent on AMPK activity in palmitate-treated RAW264. 7 cells. Int J Mol Med. 2013;31(6):1463-70. doi:https://doi.org/10.3892/ijmm.2013.1335.
14. Benchadi W, Haba H, Lavaud C, Harakat D, Benkhaled M. Secondary metabolites of Astragalus cruciatus Link. and their chemotaxonomic significance. Rec Nat Prod. 2013;7(2):105-13.
15. Linnek J, Mitaine‐Offer AC, Miyamoto T, Tanaka C, Paululat T, Avunduk S, et al. Cycloartane glycosides from three species of Astragalus (Fabaceae). Helvetica Chimica Acta. 2011;94(2):230-7. doi:https://doi.org/10.1002/hlca.201000157.
16. El-Rafie M, El-Naggar M, Ramadan M, Fouda MM, Al-Deyab SS, Hebeish A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydrate Polymers. 2011;86(2):630-5.
17. Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z, et al. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS nano. 2011;5(12):9788-98.
18. Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces. 2013;101:430-3.
19. Qu M, Zhang X, Liu G, Huang Y, Jia L, Liang W, et al. An eight-year study of Shigella species in Beijing, China: serodiversity, virulence genes, and antimicrobial resistance. J Infect Dev Ctries 2014;8(07):904-8. doi:10.3855/jidc.3692.
20. Chang C-C, Yang M-H, Wen H-M, Chern J-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis. 2002;10(3):178-82.
21. McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chemistry. 2001;73(1):73-84. doi:https://doi.org/10.1016/S0308-8146(00)00288-0.
22. Rover MR, Johnston PA, Lamsal BP, Brown RC. Total water-soluble sugars quantification in bio-oil using the phenol–sulfuric acid assay. Journal of Analytical and Applied Pyrolysis. 2013;104:194-201. doi:https://doi.org/10.1016/j.jaap.2013.08.004.
23. Yue F, Zhang J, Xu J, Niu T, Lü X, Liu M. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Frontiers in nutrition. 2022;9:963318. doi:https://doi.org/10.3389/fnut.2022.963318.
24. Shamspur T, Sheikhshoaie I, Afzali D, Mostafavi A, Mirtadzadini S. Chemical Compositions of Salix aegyptiaca L. Obtained by Simultaneous Hydrodistilation and Extraction. J Essent Oil-Bear Plants. 2011;14(5):543-8. doi:https://doi.org/10.1080/0972060X.2011.10643971.
25. Zarnowski R, Suzuki Y. Expedient Soxhlet extraction of resorcinolic lipids from wheat grains. J Food Compos Anal. 2004;17(5):649-63. doi:https://doi.org/10.1016/j.jfca.2003.09.007.
26. Mamidipally PK, Liu SX. First approach on rice bran oil extraction using limonene. Eur J Lipid Sci Technol. 2004;106(2):122-5. doi:https://doi.org/10.1002/ejlt.200300891.
27. Morton JF. Fruits of warm climates. JF Morton; 1987. p. 517 Pages.
28. Verma K, Shrivastava D, Kumar G. Antioxidant activity and DNA damage inhibition in vitro by a methanolic extract of Carissa carandas (Apocynaceae) leaves. Journal of Taibah University for science. 2015;9(1):34-40.
29. Dastafkan K, Khajeh M, Bohlooli M, Ghaffari-Moghaddam M, Sheibani N. Mechanism and behavior of silver nanoparticles in aqueous medium as adsorbent. Talanta. 2015;144:1377-86.
30. Amendola V, Bakr OM, Stellacci F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics. 2010;5:85-97.
31. Mikhailova EO. Silver nanoparticles: Mechanism of action and probable bio-application. Journal of functional biomaterials. 2020;11(4):84.
32. Ma Y, Liu C, Qu D, Chen Y, Huang M, Liu Y. Antibacterial evaluation of sliver nanoparticles synthesized by polysaccharides from Astragalus membranaceus roots. Biomedicine & Pharmacotherapy. 2017;89:351-7.
33. Sharifi-Rad M, Pohl P, Epifano F, Álvarez-Suarez JM. Green synthesis of silver nanoparticles using Astragalus tribuloides delile. root extract: Characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials. 2020;10(12):2383. doi:https://doi.org/10.3390/nano10122383.
34. Zare-Bidaki M, Aramjoo H, Mizwari ZM, Mohammadparast-Tabas P, Javanshir R, Mortazavi-Derazkola S. Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract. Arab J Chem. 2022;15(6):103842. doi:https://doi.org/10.1016/j.arabjc.2022.103842.
35. Kiani Z, Aramjoo H, Chamani E, Siami-Aliabad M, Mortazavi-Derazkola S. In vitro cytotoxicity against K562 tumor cell line, antibacterial, antioxidant, antifungal and catalytic activities of biosynthesized silver nanoparticles using Sophora pachycarpa extract. Arab J Chem. 2022;15(3):103677. doi:https://doi.org/10.1016/j.arabjc.2021.103677.
36. Lim D-H, Choi D, Choi O-Y, Cho K-A, Kim R, Choi H-S, et al. Effect of Astragalus sinicus L. seed extract on antioxidant activity. J Ind Eng Chem. 2011;17(3):510-6. doi:https://doi.org/10.1016/j.jiec.2011.02.040.
37. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol. 2003;67(4):593-656. doi:https://doi.org/10.1128/mmbr.67.4.593-656.2003.
38. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202. doi:https://doi.org/10.3390/ijms22137202.
39. Alrumman SA, Moustafa MF, Alamri SA. Anti-bacterial and anti-fungal investigation of Astragalus atropilosulus subsp. abyssinicus. Afr J Microbiol Res. 2012;6(34):6365-9. doi:https://doi.oerg/10.5897/AJMR12.778.
40. Askari Z, Vahabi MR, Allafchian A, Mousavi SA, Jalali SAH. Biosynthesis of antibacterial silver nanoparticles using Astragalus verus Olivier. Micro & Nano Letters. 2020;15(2):66-71. doi:https://doi.org/10.1049/mnl.2019.0306.
41. Abd El Aty AA, Alshammari SO, Alharbi RM, Soliman AA. Astragalus sarcocolla Gum-mediated a Novel Green-synthesis of Biologically Active Silver-Nanoparticles with Effective Anticancer and Antimicrobial activities. Jordan J Biol Sci. 2023;16(1):41-53. doi:https://doi.org/10.54319/jjbs/160107.
42. Gad HA, Mamadalieva NZ, Böhmdorfer S, Rosenau T, Zengin G, Mamadalieva RZ, et al. GC-MS based identification of the volatile components of six Astragalus species from Uzbekistan and their biological activity. Plants. 2021;10(1):124. doi:https://doi.org/10.3390/plants10010124.
43. Movafeghi A, Djozan D, Razeghi J, Baheri T. Identification of volatile organic compounds in leaves, roots and gum of Astragalus compactus Lam. using solid phase microextraction followed by GC-MS analysis. Natural Product Research. 2010;24(8):703-9. doi:https://doi.org/10.1080/14786410802361446.
44. Shamspur T, Motasadizadeh H. Extraction chemical composition in the gum tragacanth of Astragalus calliphysa bge by soxhelt and identification composition using GC/MS. J Sep Sci. 2015;7(1):55-62. doi:https://doi.org/10.22103/jsse.2015.871.
45. Wang Y, Liu J, Li N, Shi G, Jiang G, Ma W. Preliminary study of the retention behavior for different compounds using cryogenic chromatography at different initial temperatures. Microchemical Journal. 2005;81(2):184-90. doi:https://doi.org/10.1016/j.microc.2005.02.003.
46. Wang J-R, Wu X-Y, Cui C-B, Bi J-F. Effect of osmotic dehydration combined with vacuum freeze-drying treatment on characteristic aroma components of peach slices. Food Chemistry: X. 2024;22:101337. doi:https://doi.org/10.1016/j.fochx.2024.101337.
47. Koutek B, Fulem M, Mahnel Ts, Šimáček P, Růžička Kt. Extracting Vapor Pressure Data from Gas–Liquid Chromatography Retention Times. Part 2: Analysis of Double Reference Approach. Journal of Chemical & Engineering Data. 2018;63(12):4649-61. doi:https://doi.org/10.1021/ACS.JCED.8B00699.
48. Khrisanfov MD, Matyushin DD, Samokhin AS. A general procedure for finding potentially erroneous entries in the database of retention indices. Anal Chim Acta. 2024;1297:342375. doi:10.1016/j.aca.2024.342375. [PubMed:38438243].
49. Yang X, Li C, Qi M, Qu L. Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers. J Chromatogr A. 2016;1460:173-80. doi:10.1016/j.chroma.2016.07.029. [PubMed:27423773].
50. Islam M, Hossain A, Yamari I, Abchir O, Chtita S, Ali F, et al. Synthesis, Antimicrobial, Molecular Docking Against Bacterial and Fungal Proteins and In Silico Studies of Glucopyranoside Derivatives as Potent Antimicrobial Agents. Chem Biodivers. 2024;21(9):e202400932. doi:10.1002/cbdv.202400932. [PubMed:38949892].
51. Huang G, Cierpicki T, Grembecka J. Thioamides in medicinal chemistry and as small molecule therapeutic agents. Eur J Med Chem. 2024;277:116732. doi:10.1016/j.ejmech.2024.116732. [PubMed:39106658].
52. Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther. 2023;8(1):199. doi:10.1038/s41392-023-01440-5. [PubMed:37169742].
53. Hassanpouraghdam MB, Ghorbani H, Esmaeilpour M, Alford MH, Strzemski M, Dresler S. Diversity and Distribution Patterns of Endemic Medicinal and Aromatic Plants of Iran: Implications for Conservation and Habitat Management. Int J Environ Res Public Health. 2022;19(3):1552. doi:https://doi.org/10.3390/ijerph19031552. [PubMed:doi:10.3390/ijerph19031552].
54. 54. Ghasemian-Yadegari J, Hamedeyazdan S, Nazemiyeh H, Fathiazad F. Evaluation of Phytochemical, Antioxidant and Antibacterial Activity on Astragalus Chrysostachys Boiss. Roots. Iran J Pharm Res. 2019;18(4):1902-11. doi:https://doi.org/10.22037%2Fijpr.2019.1100855. [PubMed:32184856].

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.