logo
Volume 4, Issue 1 (6-2022)                   pbp 2022, 4(1): 35-48 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mashabela N M, Otang-Mbeng W. Evaluating the Effect of Fertilizers on Physiological Growth, Chemical, Bioactive Components and Secondary Metabolites in Vigna Unguiculata (L.). pbp 2022; 4 (1) :35-48
URL: http://pbp.medilam.ac.ir/article-1-98-en.html
1- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga,P/Bag X11283, Mbombela, 1200, South Africa
2- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga,P/Bag X11283, Mbombela, 1200, South Africa , Wilfred.Mbeng@ump.ac.za
Abstract:   (1901 Views)
Objective: Vigna unguiculatata (L.) (Cowpea) is an African indigenous protein-dense crop that most sub-Saharan Africans rely on for food and nutrition security.
Material and Methods: The current study assessed the effect of different levels of poultry manure fertilizer (10, 30, 60 and 90 kg F/ha) and nitrogen fertilizer (30, 45, 60 and 90 kg N/ha) on the growth, yield, mineral composition, bioactive compounds and secondary metabolites in the legume crop Vigna unguiculata (L.). At the end of 15 weeks, 90 kg F/ha and 45 kg N/ha enhanced the growth, yield, mineral composition, production of ascorbic acid, total phenolic and FRAP assay, this informed our decision for the selection of this treatments (45kgN/ha, 90kgF/ha and 0kg/ha control) for further analyses of secondary metabolites.
Results: Poultry manure and nitrogen fertilizer improved the mineral compositions of cowpea leaves, and different accumulation trends were noted depending on different application levels, with poultry manure responding well.
Conclusion: Thus, the application of organic poultry manure at 90 kg F/ha for cowpea cultivation should potentially be recommended in the Mpumalanga Province.
Full-Text [PDF 4300 kb]   (418 Downloads)    
Type of Study: Research | Subject: Bioactive Compounds
Received: 2022/02/21 | Accepted: 2022/04/11 | Published: 2022/04/13

References
1. Moloto MR, Phan AD, Shai JL, Sultanbawa Y, Sivakumar D. Comparison of phenolic compounds, carotenoids, amino acid composition, in vitro antioxidant and anti-diabetic activities in the leaves of seven cowpea (Vigna unguiculata) cultivars. Foods 2020; 9(9):1285.
2. FAO. Food & Agriculture Organization of the United Nations), Statistical Database. From http://faostat3.fao.org. Published: 2014; 23 December
3. Gonçalves A, Goufo P, Barros A, Domínguez‐Perles R, Trindade, H., Rosa, E.A., Ferreira, L. and Rodrigues, M. Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri‐food system: nutritional advantages and constraints. J Sci Food Agricult 2016; 96(9), 2941-2951.
4. Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, Nammi S, Liyanage R. Cowpea: an overview on its nutritional facts and health benefits. J Sci Food Agric 2018 98(13):4793-806.
5. Zhang B, Deng Z, Ramdath DD, Tang Y, Chen PX, Liu R, Liu Q, Tsao R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem 2015; 172: 862-72.
6. Dumas Y, Dadomo M, Di Lucca G, Grolier P. Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J Sci Food Agric 2003; 83(5):369-82.
7. Nikus O, Turk MA, Al-Tawaha AM. Yield response of sorghum (Sorghum bicolor L.) to manure supplemented with phosphate fertilizer under semi-arid Mediterranean conditions. Int J Agric Biol 2004; 6:889-93.
8. El-Assiouty FM, Abo-Sedera SA. Effect of bio and chemical fertilizers on seed production and quality of spinach (Spinacia oleracea L.). Int J Agric Biol 2005; 7(6):947-52.
9. Andrea F. This Article Reviews the FAO's Annual Report on State of Food Insecurity in the World, Issue 2015. Scholedge Int J Multidisciplinary All Stud 2015; 2(5):1-5.
10. Dakora FD, Keya SO. Nitrogen fixation in sustainable agriculture: the African experience. Soil Biol Biochem 1997; 29:809-18.
11. Henao J, Baanante C. Agricultural production and soil nutrient mining in Africa: Implications for resource conservation and policy development 2006.
12. Patil NM. Biofertilizer effect on growth, protein and carbohydrate content in Stevia rebaudiana Var Bertoni. Recent Res Sci Technol 2010; 2(10):42-4.
13. Hepperly P, Lotter D, Ulsh CZ, Seidel R, Reider C. Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Sci Utiliz 2009, 17(2):117-26.
14. Purbajanti ED, Slamet W, Fuskhah E. Effects of organic and inorganic fertilizers on growth, activity of nitrate reductase and chlorophyll contents of peanuts (Arachis hypogaea L.). InIOP conference series: Earth Environ Sci 2019; 250(1): 012048.
15. Verma S, Singh A, Pradhan SS, Singh RK, Singh JP. Bio-efficacy of organic formulations on crop production-A review. Int J Current Microbiol Appl Sci 2017; 6(5):648-65.
16. Mondal T, Datta JK, Mondal NK. Influence of indigenous inputs on the properties of old alluvial soil in a mustard cropping system. ArchAgronomy Soil Sci 2015; 61(9):1319-32.
17. Sombie PA, Sama H, Sidibé H, Kiendrébéogo M, Agricoles O, Faso B. Effect of Organic (Jatropha Cake) and NPK Fertilizers on Improving Biochemical Components and Antioxidant Properties of Five Cowpea (Vigna unguiculata L. Walp.) Genotypes. J Agric Sci 2019; 11(10):48-62.
18. Nwite JC, Keke CI, Obalum SE, Okolo CC, Essein JB, Anaele MU, Igwe CA. Evaluation of organo-minerals and inorganic fertilizer soles and their mixtures on some selected soil chemical properties and leaf nutrient composition of fluted pumpkin (Telfairia occidentalis Hook F.) in an Ultisol of southeastern Nigeria. InProceedings of International Agricultural Conference, Anambra State University, Igbariam Campus 2012; 494-501.
19. Pule-Meulenberg F, Dakota FD. Assessing the symbiotic dependency of grain and tree legumes on N2 fixation for their N nutrition in five agro-ecological zones of Botswana. Symbiosis 2009; 48(1):68-77.
20. Shaheen A, Fatma M, Rizk A, Singer SM. Growing onion plants without chemical fertilization. Res J Agr Biol Sci 2007; 3(2):95-104.
21. Mofunanya AA, Ebigwai JK, Bello OS, Egbe AO. Comparative study of the effects of organic and inorganic fertilizer on nutritional composition of Amaranthus spinosus L. Asian J Plant Scie 2015; 14(1):34-9.
22. Maboko MM, Du Plooy CP. Effect of plant spacing on growth and yield of lettuce (Lactuca sativa L.) in a soilless production system. South Afr J Plant Soil 2009; 26(3):195-8.
23. Mashabela MN, Maboko MM, Soundy P, Sivakumar D. Variety specific responses of cauliflower varieties (Brassica oleracea var. botrytis) to different N application rates on yield, colour and ascorbic acid content at harvest. Acta Agric Scandin 2018; 68(6):541-5.
24. Jimenez RR, Ladha JK. Automated elemental analysis: A rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples. Communic Soil Sci Plant Analysis 1993; 24(15-16):1897-924.
25. Ncayiyana M, Maboko MM, Bertling I. Alterations in yield, physicochemical components and mineral composition of onion following organic manure and inorganic nitrogen application. Acta Agric Scandin 2018; 68(3):213-9.
26. Singleton VL, Orthofer R, Lamuela-Raventós RM. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. InMethods in enzymology 1999; 299: 152-178.
27. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods 2015; 12(6):523-6.
28. Lai Z, Tsugawa H, Wohlgemuth G, Mehta S, Mueller M, Zheng Y, Ogiwara A, Meissen J, Showalter M, Takeuchi K, Kind T. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nature Methods 2018; 15(1):53-6.
29. Islam MA, Boyce AN, Rahman MM, Azirun MS, Ashraf MA. Effects of organic fertilizers on the growth and yield of bush bean, winged bean and yard long bean. Brazilian Arch Biol Technol 2016; 59.
30. Roy S, Arunachalam K, Dutta BK, Arunachalam A. Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Appl Soil Ecol 2010; 45(2):78-84.
31. Yoganathan R, Gunasekera HK, Hariharan R. Integrated Use of Animal Manure and Inorganic Fertilizer on Growth and Yield of Vegetable Cowpea (Vigna uniquiculata). Int J Agric Biosys Eng 2013; 7(8):775-8.
32. Oyaniyi TO, Fawole TO, Omilabu SK, Olla NO, Bidmos FA, Olakunle SD. Lead and Cadmium Accumulation in African Spinach (Amaranthus cruentus L.) Grown on Soil from a Dumpsite. Ren Able 2021; 1(1):35-44.
33. Abebe GI, Hattar BU, Al-Tawaha AR. Nutrient availability as affected by manure application to cowpea (Vigna unguiculata L. Walp.) on calacarious soils. J Agric Social Sci 2005; 1:1-6.
34. Ayoola OT, Makinde EA. Soil nutrient dynamics, growth and yield of green maize and vegetable cowpea with organic-based fertilization. Arch Agronomy Soil Sci 2014; 60(2):183-94.
35. Shiyam JO, Binang WB. Effect of poultry manure and urea-n on flowering occurrence and leaf productivity of Amaranthus cruentus. J Appl Sci Environ Management 2011; 15(1): 2.
36. Pinheiro GL, Silva CA, Lima JM. Soluble carbon in oxisol under the effect of organic residue rates. Revista Brasileira de Ciência do Solo 2014; 38(3):810-20.
37. Afolabi IS, Akpokene ON, Fashola DV, Famakin TC. Comparative evaluation of the nutritional benefits of some underutilised plants leaves. J Natural Prod Plant Res 2012; 2(2):261-6.
38. Health Benefit Times (2016): Health benefits of cowpea leaves.www.healthbenefittimes.com/cowpea/cowpea/facts_ health_benefits_and_nutrional_value Accessed October 6, 2016.
39. Organic Facts. Health Benefits of calcium in diets.www.organicfacts.net/healthbenfits/minerals/calcium.html, 2016.
40. Onyango CM, Harbinson J, Imungi JK, Onwonga RN, Kooten OV. Effect of nitrogen source, crop maturity stage and storage conditions on phenolics and oxalate contents in vegetable amaranth (Amaranthus hypochondriacus). J Agric Sci 2012; 4(7): 219-30.
41. Alemu M, Asfew Z, Woldu Z, Fanta BA, Medvecky B. Cowpea (Vigna unguiculata L. Walp..) landrace density in northern Ethiopia. Int J Biodiiver Conserv 2016; 8(11):217-309.
42. Okonya JS, Maass BL. Protein and iron composition of cowpea leaves: an evaluation of six cowpea varieties grown in eastern Africa. African Journal of Food, Agriculture, Nutr Develop 2014; 14(5):2129-40.
43. Pathak SB, Niranjan K, Padh H, Rajani M. TLC densitometric method for the quantification of eugenol and gallic acid in clove. Chromatographia 2004; 60(3):241-4.
44. Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, Baker J, Kerr DJ. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical Cancer Res 1996; 2(4):659-68.
45. Ranelletti FO, Maggiano N, Serra FG, Ricci R, Larocca LM, Lanza P, Scambia G, Fattorossi A, Capelli A, Piantelli M. Quercetin inhibits p21‐RAS expression in human colon cancer cell lines and in primary colorectal tumors. Int J Cancer 2000; 85(3):438-45.
46. Luo H, Jiang BH, King SM, Chen YC. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr Cancer 2008; 60(6):800-9.
47. Nguyen PM, Niemeyer ED. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). J Agricultural Food Chem 2008; 56(18):8685-91.
48. Ryan D, Robards K, Lavee S. Changes in phenolic content of olive during maturation. Int J Food Sci Technol 1999; 34(3):265-74.
49. Faller AL, Fialho E. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Res Int 2009; 42(1): 210-5.
50. Shields M. Chemotherapeutics. InPharmacognosy 2017 (295-313). Academic Press.
51. Fabre N, Rustan I, de Hoffmann E, Quetin-Leclercq J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Amer Society Mass Spectr 2001; 12(6):707-15.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.