Volume 5, Issue 1 (3-2023)                   2023, 5(1): 0-0 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moniri Javadhesari S, Koohi chapan M, Darvishi Harzevili F, Madzak C. Constructing a surface display plasmid encoding recombinant E7 protein of human papilloma virus type 18. Journal title 2023; 5 (1)
URL: http://pbp.medilam.ac.ir/article-1-171-en.html
Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran , solmazmoniri@gmail.com
Abstract:   (451 Views)
Background and objectives: High risk human papillomaviruses (HPV) are the main cause of urogenital cancers particularly cervix. The available prophylactic vaccines have no effect on the past HPV infections. E7 oncoprotein of HPV plays a critical role in carcinogenesis and recombinant E7 can stimulate T-cell based immune response against HPV that is a promising target as vaccine against previous HPV infections. This study aimed at the construction of a surface display vector encoding E7 protein of HPV18 to be expressed in yeast Yarrowia lipolytica in order to combine the advantages of both systems.
Materials and Methods: DNA from a HPV18-positive individual was applied for amplification of E7 encoding gene via nested-PCR. Both pINA1317-YLCWP110 plasmid and PCR products were double-digested using HindIII and SfiI. After purification, the double digested fragments were ligated together to create the recombinant pINA1317-YLCWP110-E7 plasmid. After transformation into E. coli, the positive transformants were subjected to molecular analysis. The accuracy of cloning was further assessed using Sanger sequencing.
Results: Plasmid DNA from positive transformants was analyzed by molecular methods. The E7 related band was detected in PCR, and restrictive cleavage confirmed the presence of E7 insert in the recombinant plasmid. In addition, Sanger sequencing of recombinant pINA1317-YLCWP110-E7 plasmid confirmed the accuracy of cloning; alignment of the sequencing data in gene bank verified the DNA sequence of E7 encoding gene, insert orientation, and accuracy of reading frame.
Conclusions: Prosperous cloning of E7 encoding fragment of HPV18 into surface display pINA1317-YLCWP110 plasmid was achieved. Molecular analysis and BLAST of Sanger sequencing data proved the accuracy of the sequence and cloning frame. The constructed recombinant pINA1317-YLCWP110-E7 plasmid can be used to express the E7 protein in the yeast Yarrowia lipolytica to be applicable as a vaccine, molecular marker or therapeutic aspects.

https://pbp.medilam.ac.ir/files/site1/images/Copy_editing.png
 
     
Type of Study: Research | Subject: Biotechnology
Received: 2022/10/14 | Accepted: 2022/11/22 | Published: 2022/11/22

References
1. de Sanjose S, Brotons M, Pavon MA. The natural history of human papillomavirus infection. Best practice & research Clinical obstetrics & gynaecology. 2018;47:2-13. https://doi.org/10.1016/j.bpobgyn.2017.08.015
2. Chabeda A, Yanez RJ, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Research. 2018;5:46-58. https://doi.org/10.1016/j.pvr.2017.12.006
3. Roden RB, Stern PL. Opportunities and challenges for human papillomavirus vaccination in cancer. Nature Reviews Cancer. 2018;18(4):240. https://doi.org/10.1038/nrc.2018.13
4. Balasubramaniam SD, Balakrishnan V, Oon CE, Kaur G. Key molecular events in cervical cancer development. Medicina. 2019;55(7):384.
5. https://doi.org/10.3390/medicina55070384
6. McBride AA. Human papillomaviruses: diversity, infection and host interactions. Nature reviews Microbiology. 2022;20(2):95-108. https://doi.org/10.1038/s41579-021-00617-5
7. Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nature reviews cancer. 2002;2(5):342-50. https://doi.org/10.1038/nrc798
8. Wang R, Pan W, Jin L, Huang W, Li Y, Wu D, et al. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer letters. 2020;471:88-102. https://doi.org/10.1016/j.canlet.2019.11.039
9. Ma B, Maraj B, Tran NP, Knoff J, Chen A, Alvarez RD, et al. Emerging human papillomavirus vaccines. Expert opinion on emerging drugs. 2012;17(4):469-92. https://doi.org/10.1517/14728214.2012.744393
10. Moniri Javadhesari S, Pourseif S, Khakpour K, Mozaffari H. Nucleic acid vaccines for human papillomavirus; prevention or treatment. The Iranian Journal of Obstetrics, Gynecology and Infertility. 2019;22(7):77-88. http://doi.org/10.22038/IJOGI.2019.13821
11. Braaten KP, Laufer MR. Human papillomavirus (HPV), HPV-related disease, and the HPV vaccine. Reviews in obstetrics and gynecology. 2008;1(1):2. PMID:18701931
12. Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. The Journal of general virology. 2021;102(3). http://doi.org/10.1099/jgv.0.001540
13. Bahramabadi R, Honarvar Z, Iranpour M, Arababadi MK, Dehesh T, Dabiri B, et al. Epidemiological Study of Various HPV Strains in Cervical Fluid Samples in South-Eastern Iran, 2018-2020. Archives of Iranian Medicine (AIM). 2021;24(9). http://doi.org/10.34172/aim.2021.97
14. Kesheh MM, Keyvani H. The prevalence of HPV genotypes in Iranian population: An Update. Iranian journal of pathology. 2019;14(3):197. http://doi.org/10.30699/ijp.2019.90356.1861
15. Sabet F, Mosavat A, Ghezeldasht SA, Basharkhah S, Shamsian SAA, Abbasnia S, et al. Prevalence, genotypes and phylogenetic analysis of human papillomaviruses (HPV) in northeast Iran. International journal of infectious diseases. 2021;103:480-8. https://doi.org/10.1016/j.ijid.2020.12.015
16. Hassani S, Nadji PS, Mohseni A, Rahnamaye Farzami M, Mirab Samiee S, Sadr M, et al. Evaluation Frequency of Human Papillomavirus and Its Related Genotypes in Women of the General Population Living in 11 Provinces of Iran. The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale. 2022;2022:8668557. https://doi.org/10.1155/2022/8668557
17. Moniri Javadhesari S, Khakpour K, Pourseif S, Mozaffari H. Common Genotypes of Human Papillomavirus in East Azerbaijan Population using HPV Direct Flow CHIP Kit. The Iranian Journal of Obstetrics, Gynecology and Infertility. 2020;23(5):18-25. https://doi.org/10.22038/IJOGI.2020.16610
18. Harper DM, DeMars LR. HPV vaccines–a review of the first decade. Gynecologic oncology. 2017;146(1):196-204. https://doi.org/10.1016/j.ygyno.2017.04.004
19. Zhou C, Tuong ZK, Frazer IH. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Frontiers in oncology. 2019;9:682. https://doi.org/10.3389/fonc.2019.00682
20. Zhou X, Sun L, Yao X, Li G, Wang Y, Lin Y. Progress in vaccination of prophylactic human papillomavirus vaccine. Frontiers in Immunology. 2020;11. https://doi.org/10.3389/fimmu.2020.01434
21. Lehtinen M, Lagheden C, Luostarinen T, Eriksson T, Apter D, Bly A, et al. Human papillomavirus vaccine efficacy against invasive, HPV-positive cancers: population-based follow-up of a cluster-randomised trial. BMJ open. 2021;11(12):e050669. http://dx.doi.org/10.1136/bmjopen-2021-050669
22. Markowitz LE, Schiller JT. Human Papillomavirus Vaccines. The Journal of infectious diseases. 2021;224(12 Suppl 2):S367-s78. http://doi.org/10.1093/infdis/jiaa621.
23. Derstenfeld A, Cullingham K, Ran ZC, Litvinov IV. Review of evidence and recommendation for human papillomavirus (HPV) vaccination of Canadian males over the age of 26 years. Journal of cutaneous medicine and surgery. 2020;24(3):285-91. https://doi.org/10.1177/1203475420911635
24. Cheng L, Wang Y, Du J. Human papillomavirus vaccines: An updated review. Vaccines. 2020;8(3):391. http://doi.org/10.3390/vaccines8030391.
25. Owczarek B, Gerszberg A, Hnatuszko-Konka K. A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals. BioMed research international. 2019;2019. https://doi.org/10.1155/2019/4216060
26. Wei H-y, Jiang L-f, Xue Y-h, Fang D-y, Guo H-y. Secreted expression of dengue virus type 2 full-length envelope glycoprotein in Pichia pastoris. Journal of virological methods. 2003;109(1):17-23. https://doi.org/10.1016/S0166-0934(03)00039-9
27. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Critical reviews in biotechnology. 2016;36(6):1110-22. https://doi.org/10.3109/07388551.2015.1084266
28. Nielsen J. Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered. 2013;4(4):207-11. https://doi.org/10.4161/bioe.22856
29. Yue L, Chi Z, Wang L, Liu J, Madzak C, Li J, et al. Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. Journal of Microbiological Methods. 2008;72(2):116-23. https://doi.org/10.1016/j.mimet.2007.11.011
30. Green MR, Sambrook J. Molecular Cloning: A Laboratory Manual (Fourth Edition): Cold Spring Harbor Laboratory Press; 2012.cshlpress
31. Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. The Lancet. 2019;393(10167):169-82. https://doi.org/10.1016/S0140-6736(18)32470-X.
32. Pinidis P, Tsikouras P, Iatrakis G, Zervoudis S, Koukouli Z, Bothou A, et al. Human papilloma virus’ life cycle and carcinogenesis. Maedica. 2016;11(1):48. PMID:28465751
33. Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour virus research. 2021;11:200213. https://doi.org/10.1016/j.tvr.2021.200213
34. Shanmugasundaram S, You J. Targeting persistent human papillomavirus infection. Viruses. 2017;9(8):229. https://doi.org/10.3390/v9080229
35. Cheng MA, Farmer E, Huang C, Lin J, Hung C-F, Wu T-C. Therapeutic DNA vaccines for human papillomavirus and associated diseases. Human gene therapy. 2018;29(9):971-96. https://doi.org/10.1089/hum.2017.197
36. De Jong A, O’Neill T, Khan A, Kwappenberg K, Chisholm S, Whittle N, et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine. 2002;20(29-30):3456-64. https://doi.org/10.1016/S0264-410X(02)00350-X
37. Xu D, Yang X, Wang D, Yu J, Wang Y. Surface display of the HPV L1 capsid protein by the autotransporter Shigella IcsA. Journal of Microbiology. 2014;52(1):77-82. https://doi.org/10.1007/s12275-014-3235-9
38. Wu W-H, Alkutkar T, Karanam B, Roden RBS, Ketner G, Ibeanu OA. Capsid display of a conserved human papillomavirus L2 peptide in the adenovirus 5 hexon protein: a candidate prophylactic hpv vaccine approach. Virology Journal. 2015;12(1):140. https://doi.org/10.1186/s12985-015-0364-7
39. Rosowski S, Becker S, Toleikis L, Valldorf B, Grzeschik J, Demir D, et al. A novel one-step approach for the construction of yeast surface display Fab antibody libraries. Microbial cell factories. 2018;17(1):1-11. https://doi.org/10.1186/s12934-017-0853-z

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.