logo
Volume 6, Issue 2 (7-2024)                   pbp 2024, 6(2): 31-45 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarif Fakoor E, Rezvanimanesh S, Ahmadishoar S, Mehboodi M, Mardani H R, Rastmanesh S, et al . A Review of the Antimicrobial Effects of Medicinal Plants on Staphylococcus aureus. pbp 2024; 6 (2) :31-45
URL: http://pbp.medilam.ac.ir/article-1-244-en.html
1- General Biology. Mashhad, Iran, Payam-e Noor University of Mashhad, Iran
2- Cellular and Molecular Research, Yasuj University of Medical Sciences, Yasuj, Iran
3- Department of Microbiology, Malekan Branch, Islamic Azad University, Malekan, Iran
4- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
5- Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
6- Department of Bacteriology and Virology, School of Medicine, Tabriz university of Medical Science, Tabriz, Iran
7- Department of Biology, Faculty of Science, Yasouj University, Yasouj, Iran
Abstract:   (675 Views)
This review meticulously examines the antimicrobial effects of medicinal plants on Staphylococcus aureus and underscores their potential in overcoming the challenge of drug resistance. With a plethora of plant species known for their antimicrobial properties, exploring alternative solutions to combat bacterial infections is imperative. The review emphasizes the importance of investigating plant-derived compounds that can effectively inhibit bacterial growth through unique mechanisms and discusses the synergistic effects of combining multiple compounds from plant extracts. Researchers are actively working on isolating novel bioactive chemicals from plants to serve as effective alternatives to traditional antibiotics. The study highlights the critical role of herbal medicines in addressing resistant strains of Staphylococcus aureus and stresses the necessity for further research to develop innovative treatment approaches.
 
Full-Text [PDF 451 kb]   (179 Downloads)    

Received: 2024/06/25 | Accepted: 2024/08/25 | Published: 2024/07/31

References
1. Yamazaki, Y., et al., The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Inflammation and Regeneration, 2024. 44(1): p. 9.
2. Wong Fok Lung, T. and A. Prince, Consequences of metabolic interactions during Staphylococcus aureus infection. Toxins, 2020. 12(9): p. 581.
3. Unni, S., T.J. Siddiqui, and S. Bidaisee, Reduced susceptibility and resistance to vancomycin of Staphylococcus aureus: a review of global incidence patterns and related genetic mechanisms. Cureus, 2021. 13(10).
4. Tavakoli, M., et al., The landscape of global research on diabetic neuropathy. Frontiers in Endocrinology, 2023. 14: p. 1220896.
5. Depta, J. and P. Niedźwiedzka-Rystwej, The phenomenon of antibiotic resistance in the polar regions: an overview of the global problem. Infection and Drug Resistance, 2023: p. 1979-1995.
6. Almutairi, H., et al., Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA) at a maternity and children hospital in Saudi Arabia: A cross-sectional study. Saudi Pharmaceutical Journal, 2024: p. 102001.
7. Kaur, R., et al., Emergence of nutriments as a nascent complementary therapy against antimicrobial resistance. Environmental Science and Pollution Research, 2022. 29(33): p. 49568-49582.
8. Khaledi, M., et al., Study of the Antimicrobial effects of the hydroalcoholic extract of Teucrium chamaedrys on the bacteria Streptococcus mutans invitro. Journal of Shahrekord University of Medical Sciences, 2016. 17(6): p. 61-67.
9. Dalir, F., et al., The Evaluation of Efflux Pump Genes norA, norB and norC Related to Fluoroquinolones Resistance in Staphylococcus aureus Strains Isolated from Blood Infection. Journal of Advanced Biomedical Sciences, 2023. 13(1): p. 81-87.
10. Atshan, S.S., et al., Phage therapy as an alternative treatment modality for resistant Staphylococcus aureus infections. Antibiotics, 2023. 12(2): p. 286.
11. Guo, M., et al., Herbal Medicine Nanocrystals: A Potential Novel Therapeutic Strategy. Molecules, 2023. 28(17): p. 6370.
12. Sharma, V., et al., In-silico molecular docking and molecular dynamic simulation of γ-elemene and caryophyllene identified from the essential oil of Kaempferia galanga L. against biofilm forming proteins, CrtM and SarA of Staphylococcus aureus. Journal of Biomolecular Structure and Dynamics, 2024: p. 1-13.
13. Pathak, D. and A. Mazumder, A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. DARU Journal of Pharmaceutical Sciences, 2024: p. 1-41.
14. Khaledi, M., et al., Phytochemical evaluation and antibacterial effects of Medicago sativa, Onosma sericeum, Parietaria judaica L., Phlomis persica and Echinophora platyloba DC. on Enterococcus faecalis. Biomedical Research and Therapy, 2018. 5(1): p. 1941-1951.
15. Campbell, M.J., et al., Comparative evaluation of small molecules reported to be inhibitors of Staphylococcus aureus biofilm formation. Microbiology Spectrum, 2024. 12(1): p. e03147-23.
16. Laborda, P., et al., Antibiotic resistance in Pseudomonas, in Pseudomonas aeruginosa: Biology, Pathogenesis and Control Strategies. 2022, Springer. p. 117-143.
17. Asma, S.T., et al., An overview of biofilm formation–combating strategies and mechanisms of action of antibiofilm agents. Life, 2022. 12(8): p. 1110.
18. Nguyen, T.P., et al., Antimicrobial resistance tendency and collateral sensitivity of Staphylococcus aureus adapted to antibiotics or extracts of medicinal plants grown in Viet Nam. Letters in Applied Microbiology, 2022. 75(3): p. 616-622.
19. Jeong, S., et al., Crystal Structure of SAV0927 and Its Functional Implications. 2019.
20. Abatángelo, V., et al., Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PloS one, 2017. 12(7): p. e0181671.
21. Peters, D.L., et al., Characterization of virulent T4-like Acinetobacter baumannii bacteriophages DLP1 and DLP2. Viruses, 2023. 15(3): p. 739.
22. Wang, X., et al., Staphylococcus aureus extracellular vesicles: a story of toxicity and the stress of 2020. Toxins, 2021. 13(2): p. 75.
23. Chajęcka-Wierzchowska, W., et al., Enterotoxigenic potential of coagulase-negative staphylococci from ready-to-eat food. Pathogens, 2020. 9(9): p. 734.
24. Piri-Gavgani, S., et al., Identification of two neutralizing human single-chain variable fragment antibodies targeting Staphylococcus aureus alpha-hemolysin. Iranian Journal of Basic Medical Sciences, 2022. 25(10): p. 1207.
25. Joshi, A.A. and R.H. Patil, Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant Staphylococcus aureus. Infectious Medicine, 2023.
26. Asadi-Samani, M., et al., Phytochemical properties and antibacterial effects of Salvia multicaulis Vahl., Euphorbia microsciadia Boiss., and Reseda lutea on Staphylococcus aureus and Acinetobacter baumanii. Jundishapur Journal of Natural Pharmaceutical Products, 2019. 14(3).
27. Poulsen, J.S., et al., Proteomic Changes in Methicillin-Resistant Staphylococcus aureus Exposed to Cannabinoids. Journal of Natural Products, 2023. 86(7): p. 1690-1697.
28. Uddin, O., et al., Staphylococcus hominis cellulitis and bacteremia associated with surgical clips. IDCases, 2022. 27: p. e01436.
29. Rodriguez-Quick, V.A., et al., MRSA in the bursa: an unusual complication of MRSA bacteremia causing bilateral acromioclavicular septic arthritis. Access Microbiology, 2022. 4(12): p. 000438.
30. Khaledi, M., et al., Antibacterial effect of the hydroalcoholic extracts of four Iranian medicinal plants on Staphylococcus aureus and Acinetobacter baumanii. International Journal of Pharmaceutical And Phytopharmacological Research, 2017. 7(2): p. 10-4.
31. Nandhini, P., et al., Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: a review. Antibiotics, 2022. 11(5): p. 606.
32. Bhowmick, T., et al., Collaboration between an antimicrobial stewardship team and the microbiology laboratory can shorten time to directed antibiotic therapy for methicillin-susceptible staphylococcal bacteremia and to discontinuation of antibiotics for coagulase-negative staphylococcal contaminants. Diagnostic microbiology and infectious disease, 2018. 92(3): p. 214-219.
33. Samuel, P., et al., Methicillin-resistant Staphylococcus aureus colonization in intensive care and burn units: a narrative review. Cureus, 2023. 15(10).
34. Ojala, F., et al., Bayesian modeling of the impact of antibiotic resistance on the efficiency of MRSA decolonization. PLoS computational biology, 2023. 19(10): p. e1010898.
35. Pickering, A.C., et al., Evolutionary and functional analysis of coagulase positivity among the Staphylococci. Msphere, 2021. 6(4): p. 10.1128/msphere. 00381-21.
36. Sharma, A.D. and W.G. Gutheil, Synergistic combinations of FDA-Approved drugs with ceftobiprole against methicillin-resistant staphylococcus aureus. Microbiology Spectrum, 2023. 11(1): p. e03726-22.
37. Khan, A.A., et al., Chiral phthalimides against penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus: molecular docking and in vitro analysis. Frontiers in Pharmacology, 2024. 15: p. 1293458.
38. Alidrisi, D.A., W. Alharthi, and T. Alfawaz, Invasive Community-Acquired Methicillin-Resistant Staphylococcus aureus (MRSA) Infection in Children: A Report of Five Cases and Literature Review. Cureus, 2023. 15(4).
39. Selb, R., et al., Characterization of methicillin-resistant Staphylococcus aureus from children at hospital admission: experiences from a hospital in a German metropolitan area. The Pediatric Infectious Disease Journal, 2022. 41(9): p. 720-727.
40. Borg, M.A., et al., Preventing healthcare-associated MRSA bacteremia: getting to the root of the problem. Antimicrobial Stewardship & Healthcare Epidemiology, 2023. 3(1): p. e248.
41. Köck, R. and C. Cuny, Multidrug-resistant bacteria in animals and humans. Medizinische Klinik-Intensivmedizin und Notfallmedizin, 2020. 115: p. 189-197.
42. Lim, S.R., et al., Wild nutria (Myocastor coypus) is a potential reservoir of carbapenem-resistant and zoonotic Aeromonas spp. in Korea. Microorganisms, 2019. 7(8): p. 224.
43. Grogan, L.F., et al., Immunological aspects of chytridiomycosis. Journal of Fungi, 2020. 6(4): p. 234.
44. Ahmad-Mansour, N., et al., Investigating pathogenicity and virulence of Staphylococcus pettenkoferi: an emerging pathogen. International Journal of Molecular Sciences, 2021. 22(24): p. 13614.
45. Ji, N., J. Yang, and Y. Ji, Determining Impact of Growth Phases on Capacity of Staphylococcus aureus to Adhere to and Invade Host Cells. Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols: Cutting-Edge Technologies and Advancements, 2020: p. 187-195.
46. Bashabsheh, R.H., et al., Staphylococcus aureus epidemiology, pathophysiology, clinical manifestations and application of nano-therapeutics as a promising approach to combat methicillin resistant Staphylococcus aureus. Pathogens and Global Health, 2023: p. 1-23.
47. Kong, C., H.-m. Neoh, and S. Nathan, Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins, 2016. 8(3): p. 72.
48. Peetermans, M., et al., Targeting coagulase activity in Staphylococcus aureus bacteraemia: a randomized controlled single-centre trial of staphylothrombin inhibition. Thrombosis and haemostasis, 2018. 118(05): p. 818-829.
49. Park, C., et al., Development of a new type of recombinant hyaluronidase using a hexahistidine; possibilities and challenges in commercialization. 2019.
50. Del Giudice, P., Skin infections caused by Staphylococcus aureus. Acta dermato-venereologica, 2020. 100(9).
51. Dietrich, R., et al., The food poisoning toxins of Bacillus cereus. Toxins, 2021. 13(2): p. 98.
52. Hurley, K.E., et al., The contribution of DNA repair pathways to Staphylococcus aureus fitness and fidelity during nitric oxide stress. mBio, 2023. 14(6): p. e02156-23.
53. Peters, D.T., et al., Unraveling the molecular determinants of the anti-phagocytic protein cloak of plague bacteria. PLoS Pathogens, 2022. 18(3): p. e1010447.
54. Liu, Y., J. Zhang, and Y. Ji, Environmental factors modulate biofilm formation by Staphylococcus aureus. Science Progress, 2020. 103(1): p. 0036850419898659.
55. Hackemann, V.C., et al., The Controversial Effect of Antibiotics on Methicillin-Sensitive S. aureus: A Comparative In Vitro Study. International Journal of Molecular Sciences, 2023. 24(22): p. 16308.
56. Li, S., et al., Recruitment of C4b-binding protein is not a complement evasion strategy employed by Staphylococcus aureus. Microbiology, 2023. 169(9): p. 001391.
57. Howden, B.P., et al., Staphylococcus aureus host interactions and adaptation. Nature Reviews Microbiology, 2023. 21(6): p. 380-395.
58. Sabino, Y.N.V., P.D. Cotter, and H.C. Mantovani, Anti-virulence compounds against Staphylococcus aureus associated with bovine mastitis: A new therapeutic option? Microbiological Research, 2023. 271: p. 127345.
59. Khan, S.A., et al., Draft genome sequences of 27 hospital-associated methicillin-resistant Staphylococcus aureus strains isolated in minnesota. Microbiology Resource Announcements, 2022. 11(2): p. e01186-21.
60. Zheng, P., et al., Latest Advances in the Application of Humanized Mouse Model for Staphylococcus aureus. The Journal of Infectious Diseases, 2023. 228(6): p. 800-809.
61. Mollard, S., et al., Burden of Clostridium (Clostridioides) difficile infection during inpatient stays in the USA between 2012 and 2016. Journal of Hospital Infection, 2019. 102(2): p. 135-140.
62. Cascioferro, S., et al., Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm‐associated infections. ChemMedChem, 2021. 16(1): p. 65-80.
63. Weber, D.J., et al., Biofilms on medical instruments and surfaces: Do they interfere with instrument reprocessing and surface disinfection. American Journal of Infection Control, 2023. 51(11): p. A114-A119.
64. Mariani, F. and E.M. Galvan, Staphylococcus aureus in Polymicrobial Skinand Soft Tissue Infections: Impact of Inter-Species Interactionsin Disease Outcome. Antibiotics, 2023. 12(7): p. 1164.
65. Papastefan, S.T., et al., Impact of decolonization protocols and recurrence in pediatric MRSA skin and soft-tissue infections. Journal of Surgical Research, 2019. 242: p. 70-77.
66. Mitevska, E., et al., The prevalence, risk, and management of methicillin-resistant Staphylococcus aureus infection in diverse populations across Canada: a systematic review. Pathogens, 2021. 10(4): p. 393.
67. Zavaleta, E., et al., Antibiotic consumption in primary care in Costa Rica and Italy: a retrospective cross-country analysis. Cureus, 2023. 15(7).
68. Zeng, Q., et al., Advances in the research of application of urine output monitoring in prevention and treatment of burn shock. Zhonghua Shao Shang za zhi= Zhonghua Shaoshang Zazhi= Chinese Journal of Burns, 2018. 34(1): p. 29-31.
69. Kusaka, S., et al., Oral and rectal colonization of methicillin‐resistant Staphylococcus aureus in long‐term care facility residents and their association with clinical status. Microbiology and Immunology, 2024.
70. Laka, M., A. Milazzo, and T. Merlin, Inappropriate antibiotic prescribing: understanding clinicians’ perceptions to enable changes in prescribing practices. Australian Health Review, 2021. 46(1): p. 21-27.
71. Kinsley, A., et al., Characterization of swine movements in the United States and implications for disease control. Preventive veterinary medicine, 2019. 164: p. 1-9.
72. Medugu, N., et al., A mini-national surveillance study of resistance profiles of Staphylococcus aureus isolated from clinical specimens across hospitals in Nigeria. Nigerian Journal of Clinical Practice, 2021. 24(2): p. 225-232.
73. García de la Mària, C., et al., Emerging issues on Staphylococcus aureus endocarditis and the role in therapy of daptomycin plus fosfomycin. Expert Review of Anti-infective Therapy, 2023. 21(3): p. 281-293.
74. AlSaleh, A., et al., Multidrug-resistant Staphylococcus aureus isolates in a tertiary care hospital, Kingdom of Bahrain. Cureus, 2023. 15(4).
75. Ma, J., et al., Global spread of carbapenem-resistant Enterobacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy. Microbiological Research, 2023. 266: p. 127249.
76. Heinonen, T., et al., The antimicrobial peptide TAT-RasGAP317-326 inhibits the formation and expansion of bacterial biofilms in vitro. Journal of Global Antimicrobial Resistance, 2021. 25: p. 227-231.
77. Rapacka-Zdonczyk, A., et al., Development of antimicrobial phototreatment tolerance: Why the methodology matters. International Journal of Molecular Sciences, 2021. 22(4): p. 2224.
78. Faltus, T., The Medicinal Phage—Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation. Viruses, 2024. 16(3): p. 443.
79. Morguette, A.E.B., et al., The Antibacterial and Wound Healing Properties of Natural Products: A Review on Plant Species with Therapeutic Potential against Staphylococcus aureus Wound Infections. Plants, 2023. 12(11): p. 2147.
80. Liu, C., et al., Phage–antibiotic therapy as a promising strategy to combat multidrug-resistant infections and to enhance antimicrobial efficiency. Antibiotics, 2022. 11(5): p. 570.
81. Kang, Y.R., et al., Comparing the Synergistic and Antagonistic Interactions of Ciprofloxacin and Levofloxacin Combined with Rifampin against Drug-Resistant Staphylococcus aureus: A Time–Kill Assay. Antibiotics, 2023. 12(4): p. 711.
82. Kumar, V., et al., Antibiotic adjuvants: synergistic tool to combat multi-drug resistant pathogens. Frontiers in Cellular and Infection Microbiology, 2023. 13: p. 1293633.
83. Liu, K., et al., Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Frontiers in Cellular and Infection Microbiology, 2024. 14.
84. Sukmarini, L., A. Atikana, and T. Hertiani, Antibiofilm activity of marine microbial natural products: potential peptide-and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. Journal of Natural Medicines, 2024. 78(1): p. 1-20.
85. Allen, P.E. and J.J. Martinez, Modulation of host lipid pathways by pathogenic intracellular bacteria. Pathogens, 2020. 9(8): p. 614.
86. Giacobbe, D.R., et al., Potential role of new-generation antibiotics in acute bacterial skin and skin structure infections. Current Opinion in Infectious Diseases, 2021. 34(2): p. 109-117.
87. Boye, T.L., et al., Molecular manipulations and intestinal stem cell-derived organoids in inflammatory bowel disease. Stem Cells, 2022. 40(5): p. 447-457.
88. Kopf, A., et al., Identification and antibiotic profiling of Wohlfahrtiimonas chitiniclastica, an underestimated human pathogen. Frontiers in Microbiology, 2021. 12: p. 712775.
89. Scolari, I.R., et al., Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus. Drug delivery and translational research, 2020. 10: p. 1403-1417.
90. Kalsy, M., et al., The insect antimicrobial peptide cecropin A disrupts uropathogenic Escherichia coli biofilms. npj Biofilms and Microbiomes, 2020. 6(1): p. 6.
91. Piewngam, P. and M. Otto, Staphylococcus aureus colonisation and strategies for decolonisation. The Lancet Microbe, 2024.
92. Itokawa, T., et al., Advances in Contact Lens Care Solutions: PVP-I Disinfectant and HAD Wetting Agents From Japan. Eye & Contact Lens, 2024. 50(2): p. 91-101.
93. Chung, E.J., et al., Immunomodulatory role of Staphylococcus aureus in atopic dermatitis. Pathogens, 2022. 11(4): p. 422.
94. Duman, H. and S. Karav, Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Frontiers in Immunology, 2023. 14: p. 1214514.
95. Wang, H., et al., Mechanically robust dissolving microneedles made of supramolecular photosensitizers for effective photodynamic bacterial biofilm elimination. ACS Applied Materials & Interfaces, 2023. 15(21): p. 25417-25426.
96. Hamblin, M.R., Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Current opinion in microbiology, 2016. 33: p. 67-73.
97. Schwarzer, S., et al., The efficacy of topical agents used in wounds for managing chronic biofilm infections: A systematic review. Journal of Infection, 2020. 80(3): p. 261-270.
98. Zhao, N., et al., Virulence adaption to environment promotes the age-dependent nasal colonization of Staphylococcus aureus. Emerging microbes & infections, 2022. 11(1): p. 1402-1415.
99. Habteweld, H.A. and T. Asfaw, Novel Dietary Approach with Probiotics, Prebiotics, and Synbiotics to Mitigate Antimicrobial Resistance and Subsequent Out Marketplace of Antimicrobial Agents: A Review. Infection and Drug Resistance, 2023: p. 3191-3211.
100. Sharma, I., et al., The Emergence of Nanotechnology in the Prognosis and Treatment of Myocardial Infarctions. Recent Patents on Nanotechnology, 2023.
101. Xin, L., et al., Ultrasound-activatable phase-shift nanoparticle as a targeting antibacterial agent for efficient eradication of Pseudomonas aeruginosa biofilms. ACS Applied Materials & Interfaces, 2022. 14(42): p. 47420-47431.
102. Yaacob, S.N., et al., Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant Staphylococcus aureus. Future Microbiology, 2022. 17(9): p. 683-699.
103. Sharifi‐Rad, M., et al., Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytotherapy Research, 2018. 32(9): p. 1653-1663.
104. Dvorakova, M., et al., The traditional utilization, biological activity and chemical composition of edible fern species. Journal of Ethnopharmacology, 2024: p. 117818.
105. Xiao, S., et al., Identification of essential oils with activity against stationary phase Staphylococcus aureus. BMC complementary medicine and therapies, 2020. 20: p. 1-10.
106. Azizi, Z., et al., Protein kinase C involvement in neuroprotective effects of thymol and carvacrol against toxicity induced by Amyloid-β in rat hippocampal neurons. Basic and Clinical Neuroscience, 2022. 13(3): p. 295.
107. Liu, Y., et al., Proteomics and transcriptomics explore the effect of mixture of herbal extract on diabetic wound healing process. Phytomedicine, 2023. 116: p. 154892.
108. Sheikh, M., et al., Formulation, evaluation and optimization of Antimicrobial potential of herbal cream containing Allium sativum, Moringa oleifera extracts and Thymus vulgaris oil. Current Pharmaceutical Biotechnology, 2024. 25(3): p. 365-383.
109. Adaszyńska-Skwirzyńska, M., M. Dzięcioł, and D. Szczerbińska, Lavandula angustifolia essential oils as effective enhancers of fluconazole antifungal activity against Candida albicans. Molecules, 2023. 28(3): p. 1176.
110. Johnson, S.C. and M. Kaeberlein, Rapamycin in aging and disease: maximizing efficacy while minimizing side effects. Oncotarget, 2016. 7(29): p. 44876.
111. Xiong, Y., et al., The use of Chinese herbal medicines throughout the pregnancy life course and their safety profiles: a population-based cohort study. American Journal of Obstetrics & Gynecology MFM, 2023. 5(5): p. 100907.
112. Arbab, S., et al., Comparative study of antimicrobial action of aloe vera and antibiotics against different bacterial isolates from skin infection. Veterinary medicine and science, 2021. 7(5): p. 2061-2067.
113. Liu, Q., M. Mazhar, and L.S. Miller, Immune and inflammatory reponses to Staphylococcus aureus skin infections. Current dermatology reports, 2018. 7: p. 338-349.
114. Alanazi, H.H., et al., Medicinal Herbs: Promising Immunomodulators for the Treatment of Infectious Diseases. Molecules, 2023. 28(24): p. 8045.
115. Ventress, J.K., et al., Peptides from tetraspanin CD9 are potent inhibitors of Staphylococcus aureus adherence to keratinocytes. PLoS One, 2016. 11(7): p. e0160387.
116. Pérez, C., T. Zúñiga, and C.E. Palavecino, Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis and Photodynamic Therapy, 2021. 34: p. 102285.
117. Frydman, G.H., et al., Manuka honey microneedles for enhanced wound healing and the prevention and/or treatment of Methicillin-resistant Staphylococcus aureus (MRSA) surgical site infection. Scientific reports, 2020. 10(1): p. 13229.
118. Aderemi, F.A. and O.M. Alabi, Turmeric (Curcuma longa): an alternative to antibiotics in poultry nutrition. Translational Animal Science, 2023. 7(1): p. txad133.
119. Sharma, S., et al., Antimicrobial studies on garlic lectin. Probiotics and Antimicrobial Proteins, 2023. 15(6): p. 1501-1512.
120. Nakamoto, M., et al., Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Experimental and therapeutic medicine, 2020. 19(2): p. 1550-1553.
121. Kairey, L., et al., Efficacy and safety of Melaleuca alternifolia (tea tree) oil for human health—A systematic review of randomized controlled trials. Frontiers in pharmacology, 2023. 14: p. 1116077.
122. Wang, F., et al., Antibacterial activity of Chinese propolis and its synergy with β-lactams against methicillin-resistant Staphylococcus aureus. Brazilian Journal of Microbiology, 2022. 53(4): p. 1789-1797.
123. Teow, S.-Y., et al., Antibacterial action of curcumin against Staphylococcus aureus: a brief review. Journal of tropical medicine, 2016. 2016.
124. Kamurai, B., M. Mombeshora, and S. Mukanganyama, Repurposing of drugs for antibacterial activities on selected ESKAPE bacteria Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Microbiology, 2020. 2020.
125. Nikolic, P. and P. Mudgil, The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance. Microorganisms, 2023. 11(2): p. 259.
126. Tabassum, N., et al., Inhibition of polymicrobial biofilms of Candida albicans–Staphylococcus aureus/Streptococcus mutans by fucoidan–gold nanoparticles. Marine Drugs, 2023. 21(2): p. 123.
127. Khruengsai, S., T. Sripahco, and P. Pripdeevech, Antibacterial activity and synergic effects of the essential oils of Amomum verum Blackw and Zanthoxylum limonella (Dennst.) Alston. Archives of Microbiology, 2023. 205(3): p. 102.
128. Sousa, M.N., et al., Hydroalcoholic leaf extract of Punica granatum, alone and in combination with calcium hydroxide, is effective against mono-and polymicrobial biofilms of Enterococcus faecalis and Candida albicans. Antibiotics, 2022. 11(5): p. 584.
129. Falev, D.I., et al., Comparative study of four Yucca species by 2D-NMR and LC-MS. Natural Product Research, 2024. 38(3): p. 544-548.
130. Shrestha, A., et al., Comparison of the polyphenolic profile and antibacterial activity of the leaves, fruits and flowers of Rhododendron ambiguum and Rhododendron cinnabarinum. BMC Research Notes, 2017. 10: p. 1-11.
131. Han, W. and T.A. Camesano, LL37-Derived Fragments Improve the Antibacterial Potential of Penicillin G and Ampicillin against Methicillin-Resistant Staphylococcus aureus. Antibiotics, 2023. 12(9): p. 1398.
132. Kuok, C.-F., et al., Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Experimental Biology and Medicine, 2017. 242(7): p. 731-743.
133. Kim, S.Y., et al., Antimicrobial effects and resistant regulation of magnolol and honokiol on methicillin-resistant Staphylococcus aureus. BioMed research international, 2015. 2015.
134. Mangu, J.C.K., et al., Per-and polyfluoroalkyl substances enhance Staphylococcus aureus pathogenicity and impair host immune response. Environmental Pollution, 2022. 314: p. 120294.
135. Francis, D., A. Bhairaddy, and A. Joy, The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections. Advances in Protein Chemistry and Structural Biology, 2023. 138: p. 327-400.
136. Zhang, T., et al., Biofilm inhibition in oral pathogens by nanodiamonds. Biomaterials Science, 2021. 9(15): p. 5127-5135.
137. Syahruni, R., et al., Morphology, anatomy, and histochemistry of three species of Jatropha: a contribution to plant recognition and selection. Plant Biology, 2023. 25(6): p. 1009-1021.
138. Seong, E., et al., Enhancement of bioactive compounds and biological activities of Centella asiatica through ultrasound treatment. Ultrasonics Sonochemistry, 2023. 94: p. 106353.
139. Kato-Noguchi, H. and M. Kato, Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and allelopathic functions. Plants, 2023. 12(3): p. 521.
140. Gaia, A.M., et al., Ontogenetic changes in the chemical profiles of Piper species. Plants, 2021. 10(6): p. 1085.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.