Volume 4, Issue 2 (12-2022)                   pbp 2022, 4(2): 122-114 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammed S J, Mohammed Z J, Lazim I I, Narimani-Rad M. An Update on the Effect of Water Stress on Plants. pbp 2022; 4 (2) :122-114
URL: http://pbp.medilam.ac.ir/article-1-150-en.html
1- Department of Biology, College of Science, University of Misan, Iraq
2- Department of Biomedical Engineering, Central Tehran branch, Islamic Azad University, Tehran, Iran
Abstract:   (1488 Views)
Rarely optimal environmental conditions of the plant are available, from water, air and nutrients, Water stress often occurs due to lack of soil moisture or other factors may pay organisms to limited survival. The study of plants under these conditions and knowledge of how the plant responds to water stress on the basis of changing life and physiological processes, so this review describes some aspects of the changes caused by water stress in germination, morphological, physiological and productivity composition in higher plants.
Full-Text [PDF 3271 kb]   (319 Downloads)    
Type of Study: Research | Subject: Herbal Drugs
Received: 2022/08/15 | Accepted: 2022/12/1 | Published: 2022/12/1

References
1. Jaleel CA, Manivannan P, Kishorekumar A, Sankar B, Gopi R, Somasundaram R, et al. Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in catharanthus roseus exposed to water deficit. Colloids and Surfaces B: Biointerfaces. 2007;59(2):150–7. doi:10.1016/j.colsurfb.2007.05.001
2. Nakayama N, Okumura M, Inoue K, Asakawa S, Kimura M. Morphological analysis of viral communities in the floodwater of a Japanese paddy field. Soil Biology and Biochemistry. 2007;39(12):3187–90. doi:10.1016/j.soilbio.2007.06.025
3. Okumura M, Inoue K, Asakawa S, Kimura M. Turner N.C., (1986). Adaptation to water deficit. A changing perspective. AUST. Plant. Physiol. 13: 175-180. Soil Biology and Biochemistry. 2007;39(12):3187–90. doi:10.1016/j.soilbio.2007.06.025
4. Okumura M, Inoue K, Asakawa S, Kimura M. Jones H.G, et Jones M.B., (1989). Introduction: Some terminology and common mechanisms. In: Jones T.J; Flowers M.B. Jones (Eds), Plantsunder stress. Cambridge Univ.Press, pp: 1-10. Soil Biology and Biochemistry. 2007;39(12):3187–90. doi:10.1016/j.soilbio.2007.06.025
5. Okumura M, Inoue K, Asakawa S, Kimura M. Kranner, I., Minibayeva, F. V., Beckett, R. P., & Seal, C. E. (2010). What is stress? Concepts, definitions and applications in seed science. New Phytologist, 188(3), 655-673.‌. Soil Biology and Biochemistry. 2007;39(12):3187–90. doi:10.1016/j.soilbio.2007.06.025
6. Okumura M, Inoue K, Asakawa S, Kimura M. Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: causes, consequences, and tolerance. In Drought Stress Tolerance in Plants, Vol 1 (pp. 1-16). Springer, Cham.‌‌. Soil Biology and Biochemistry. 2007;39(12):3187–90. doi:10.1016/j.soilbio.2007.06.025
7. Singh, S, Prasad, S, Yadav, V, Kumar, A, Jaiswal, B, Kumar, A, . & Dwivedi, D K (2018) Effect of drought stress on yield and yield components of rice (Oryza sativa L) genotypes Int J Curr Microbiol Appl Sci, 7, 2752-2759‌.
8. Sima Taheri. Wang, S., Liang, D., Li, C., Hao, Y., Ma, F., & Shu, H. (2012). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry, 51, 81-89.‌. AFRICAN JOURNAL OF BIOTECHNOLOGY. 2011;10(80). doi:10.5897/ajb11.352
9. Wang, S., Liang, D., Li, C., Hao, Y., Ma, F., & Shu, H. (2012). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry, 51, 81-89.‌. AFRICAN JOURNAL OF BIOTECHNOLOGY. 2011;10(80). doi:10.5897/ajb11.352
10. Jaleel CA, Sankar B, Murali PV, Gomathinayagam M, Lakshmanan GMA, Panneerselvam R. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on Ajmalicine accumulation. Colloids and Surfaces B: Biointerfaces. 2008;62(1):105–11. doi:10.1016/j.colsurfb.2007.09.026
11. Siti Aisha H, Saberi AR, Halim RA, Zaharah AR. Salinity effects on germination of forage Sorghumes. Journal of Agronomy. 2010;9(4):169–74. doi:10.3923/ja.2010.169.174
12. Lee S, Kim S, Park C. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist. 2010;188(2):626–37. doi:10.1111/j.1469-8137.2010.03378.x
13. Mohammed SJ, Rosimah N. Impact of NACL, KCl, MCL2, MGSO4 and CACL2 on the leaf anatomy of cucumber (Cucumis sativus CV. MTI2). Plant Archives. 2020;20(1):2802-6.
14. RADHOUANE, Leila. Response of Tunisian autochthonous pearl millet (Pennisetum glaucum (L.) R. Br.) to drought stress induced by polyethylene glycol (PEG) 6000. African journal of biotechnology, 2007, 6.9.‌
15. Rahmani N. Effect of irrigation and nitrogen application on the quantity and quality of medicinal plant Marigold (Calendula officinalis L.). J. Afr. Agric. Res. 2006;6(9):2026-32.
16. Fathi, A. and Tari, D.B. (2016) ‘Effect of drought stress and its mechanism in plants’, International Journal of Life Sciences, 10(1), pp. 1–6. doi:10.3126/ijls.v10i1.14509.
17. Yigit N, Sevik H, Cetin M, Kaya N. Determination of the effect of drought stress on the seed germination in some plant species. Water Stress in Plants. 2016; doi:10.5772/63197
18. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM. Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture. 2009;153–88. doi:10.1007/978-90-481-2666-8_12
19. Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 2007;59(2):206–16. doi:10.1016/j.envexpbot.2005.12.006
20. Tatar O, Gevrek MN. Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian Journal of Plant Sciences. 2008;7(4):409–12. doi:10.3923/ajps.2008.409.412
21. Khan SH. Effect of drought stress on Tomato CV. Bombino. Journal of Food Processing & Technology. 2015;06(07). doi:10.4172/2157-7110.1000465
22. Abdul Q, Abdul R, Muhammad A, Matthew AJ. Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (triticum aestivum L.) genotypes. African Journal of Biotechnology. 2011;10(64):14038–45. doi:10.5897/ajb11.2220
23. Manivannan P, Jaleel CA, Sankar B, Kishorekumar A, Somasundaram R, Lakshmanan GMA, et al. Growth, biochemical modifications and proline metabolism in helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces. 2007;59(2):141–9. doi:10.1016/j.colsurfb.2007.05.002
24. Benlaribi M, Monneveux P, Grignac P. Étude des caractères d’enracinement et de Leur rôle dans l’adaptation au déficit hydrique chez le Blé Dur (Triticum durum desf). Agronomie. 1990;10(4):305–22. doi:10.1051/agro:19900405
25. Perlikowski D, Czyżniejewski M, Marczak Ł, Augustyniak A, Kosmala A. Water deficit affects primary metabolism differently in two lolium multiflorum/festuca arundinacea introgression forms with a distinct capacity for photosynthesis and membrane regeneration. Frontiers in Plant Science. 2016;7. doi:10.3389/fpls.2016.01063
26. Ali Dib T, Monneveux PH, Araus JL. Breeding durum wheat for drought tolerance. Analytical, synthetical approaches, and their connections. InProceeding of International Symposium, June 4th-8th, Albena, Bulgaria, Agricultural Academy 1990 Jun 4 (pp. 224-240).
27. Adjab M. Recherche des traits morphologiques, physiologiqueset biochimiquesd’adaptation au déficithydrique chez différentsgénotypes de blédur (Triticum durum). Triticum durum. 2002.
28. Blum A. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Science. 1989;29(1):230–3. doi:10.2135/cropsci1989.0011183x002900010052x
29. Ludlow MM, Muchow RC. A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy. 1990;107–53. doi:10.1016/s0065-2113(08)60477-0
30. Młodzińska E. Survey of plant pigments: molecular and environmental determinants of plant colors. Acta Biologica Cracovienca Series Botanica. 2009;51(1):7-16.
31. Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany. 2000;51(345):659–68. doi:10.1093/jexbot/51.345.659
32. Tembe KO, Chemining’wa GN, Ambuko J, Owino W. Effect of water stress on yield and physiological traits among selected African tomato (Solanum lycopersicum) land races.2017.
33. Hossain, M.D. A. Water stress tolerance tomato genotypes. M.Sc. Thesis, Department of Crop Botany Bangladesh agricultural university of Mymensingh. 2007.
34. Keyvan S. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J. Anim. Plant Sci. 2010 Jan 1;8(3):1051-60.
35. Al-Rahbawi, Shaima Mazi Jabbar. The effect of irrigation water quality and quantity on the growth and productivity of wheat (Triticum aestivum L) in Najaf Governorate. Master Thesis . College of Science . University of Kufa. 2012.
36. Mohammad HA, Abu-dahi YM. THE ROLE OF FOLIAR APPLICATION OF MANGANES AND BORON ON WATER STRESS FOR MAIZE ( Zea mays L.) 2. The Quantity and Quality characteristic for Plant . DASJ [Internet]. 2013 Dec. 30 [cited 2023 May 29];5(2):465-79. Available from: https://journal.djas.uodiyala.edu.iq/index.php/dasj/article/view/285
37. ZHANG Y, SHI Y, GONG H, ZHAO H, LI H, HU Y, et al. Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture. 2018;17(10):2151–9. doi:10.1016/s2095-3119(18)62038-6
38. Gago J, Daloso DM, Carriquí M, Nadal M, Morales M, Araújo WL, et al. The photosynthesis game is in the “inter-play”: Mechanisms underlying CO2 diffusion in leaves. Environmental and Experimental Botany. 2020;178:104174. doi:10.1016/j.envexpbot.2020.104174
39. ABOUSSOUAN-SEROPIAN C, PLANCHON C. Réponse de la photosynthèse de Deux Variétés de Blé à un déficit hydrique foliaire. Agronomie. 1985;5(7):639–44. doi:10.1051/agro:19850710
40. Oosterhuis DM, Walker S. Stomatal resistance measurement as an indicator of water deficit stress in wheat and soybeans. South African Journal of Plant and Soil. 1987;4(3):113–20. doi:10.1080/02571862.1987.10634956
41. Kutlu İM, Turhan E, Yorgancilar Ö, Yorgancilar A. Differences of physiological parameters and sucrose metabolism in bread wheat genotypes exposed to drought stress. August 2021. 2020;31(4). doi:10.36899/japs.2021.4.0296
42. Zhang YJ, Xie ZK, Wang YJ, Su PX, An LP, Gao H. Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of Oriental Lily. Russian Journal of Plant Physiology. 2011;58(5):844–50. doi:10.1134/s1021443711050268
43. George-Jaeggli B, Mortlock MY, Borrell AK. Bigger is not always better: Reducing Leaf area helps stay-green sorghum use soil water more slowly. Environmental and Experimental Botany. 2017;138:119–29. doi:10.1016/j.envexpbot.2017.03.002
44. Austin RB. Stress responses in plants: Adaptation and acclimation mechanisms. edited by R. G. Alscher and J. R. Cumming. New York: Wiley-Liss (1990), pp. 407, US$ 99.50. ISBN 0-471-56810-4. Experimental Agriculture. 1991;27(4):447–447. doi:10.1017/s0014479700019530
45. Hirasawa T, Wakabayashi K, Touya S, Ishihara K. Stomatal responses to water deficits and abscisic acid in leaves of sunflower plants (helianthus annuus L.) grown under different conditions. Plant and Cell Physiology. 1995;36(6):955–64. doi:10.1093/oxfordjournals.pcp.a078866
46. Sanchez-Diaz MF, Kramer PJ. Behavior of corn and sorghum under water stress and during recovery. Plant Physiology. 1971;48(5):613–6. doi:10.1104/pp.48.5.613
47. Hosker RP, Lindberg SE. Review: Atmospheric deposition and plant assimilation of gases and particles. Atmospheric Environment (1967). 1982;16(5):889–910. doi:10.1016/0004-6981(82)90175-5
48. Caird MA, Richards JH, Donovan LA. Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology. 2007;143(1):4–10. doi:10.1104/pp.106.092940
49. Whitmore JS. Drought management on farmland. Springer Science & Business Media; 2000 Jan 31
50. Hopkins WG. Photosynthesis and respiration [Internet]. Chelsea House. 2006;Available from: https://books.google.com/books/about/Photosynthesis_and_Respiration.html?id=Qt1buAAACAAJ
51. BLACKMAN PG, DAVIES WJ. Root to shoot communication in maize plants of the effects of soil drying. Journal of Experimental Botany. 1985;36(1):39–48. doi:10.1093/jxb/36.1.39
52. Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. Frontiers in Plant Science. 2013;4. doi:10.3389/fpls.2013.00442
53. Benlaribi M. Adaptation au déficit hydrique chez le blé dur (Triticum durum Desf.): Etude des caractères morphologiques et physiologiques (Doctoral dissertation, Thèse de Doctorat d’Etat, ISN-Université de Constantine).1990.
54. Nahar K, Gretzmacher R. Response of shoot and root development of seven tomato cultivars in hydrophonic system under water stress. Academic Journal of Plant Sciences. 2011;4(2):57-63.
55. Brisson N. On the importance of soil evaporation and rainfall interception in irrigation scheduling. InInternational Conference 1996 Nov 3. American Society of Agricultural Engineers.
56. Ait Kaki Y. Contribution à l’étude des mécanismes morpho physiologiques de tolérance au stress hydrique sur 5 variétés de blé dur (Triticum durum Desf.). Mémoire de Magistère. Université d’Annaba, p130. 1993.
57. Akter N, Rafiqul Islam M, Abdul Karim M, Hossain T. Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. Journal of Crop Science and Biotechnology. 2014;17(1):41–8. doi:10.1007/s12892-013-0117-3
58. Fereres E. Variability in adaptive mechanisms to water deficits in annual and perennial crop plants. Bulletin de la Société Botanique de France Actualités Botaniques. 1984;131(1):17–32. doi:10.1080/01811789.1984.10826629
59. Nemmar M. Contribution à l’étude de la résistance à la sécheresse chez les variétés de blédur (Triticum durum Desf) et de blétendre (TriticumaestivumL). Evaluation des teneurs en proline au coursdu cycle de développement (Doctoral dissertation, Thèse de doctorat. Montpellier. p: 108).
60. Wahb-Allah MA, Alsadon AA, Ibrahim AA. Drought tolerance of several tomato genotypes under greenhouse conditions. World Applied Sciences Journal. 2011;15(7):933-40.
61. Casal JJ. Phytochrome a enhances the promotion of hypocotyl growth caused by reductions in levels of phytochrome B in its far-red-light-absorbing form in light-grown Arabidopsis thaliana. Plant Physiology. 1996;112(3):965–73. doi:10.1104/pp.112.3.965
62. Grignac P. Contraintes de l’environnement et l’elaboration du rendement dans la zone mediterraneennefrancaise In: L’elaboration du rendement des cultures ceralieres. InColloque Franco-Roumain, Clermont Ferrand 1986 Mar (pp. 17-19).
63. Ozbahce A, Tari AF. Effects of different emitter space and water stress on yield and quality of processing tomato under semi-arid climate conditions. Agricultural Water Management. 2010;97(9):1405–10. doi:10.1016/j.agwat.2010.04.008
64. Fadol, H. A., Ahamed, S. H., &Eldie, Y. DEffect of Water Stress on Growth and Yield of different faba bean varieties (Viciafaba L.) in Kabkabia Suburb North Darfur.2017. http://dx.doi.org/10.13140/RG.2.2.33077.83681

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.