Volume 5, Issue 2 (12-2023)                   pbp 2023, 5(2): 56-67 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammed S J, Nulit R, Fayed M I A. Effects of Using Salicylic acid, Potassium chloride, and a Mixture of Salicylic acid and Potassium chloride Treatments on Salt-stressed Cucumis sativus CV. Malaysia timun2 Germination. pbp 2023; 5 (2) :56-67
URL: http://pbp.medilam.ac.ir/article-1-179-en.html
1- Biology Department, College of Science, University of Misan, Amarah, Iraq
2- Biology Department, Faculty of Science, University of Putra Malaysia, Malaysia
3- Agricultural Engineering, Faculty of Agriculture, Zagazig University, Egypt , dr_eng.fayed@yahoo.com
Abstract:   (196 Views)
 In constructing a liquid enhancer, 300 mM NaCl was primed for 72 hours on sterile MTi2 seeds., after that, deionized water was used as a control, and SA alone (salicylic acid) (0.25, 0.5, 0.75, 1 mM) and only KCl (Potassium chloride) (10, 20, 30, 40, and 50 mM) were applied. As previously stated, germination parameters were computed. After that, the appropriate ratio of KCl to SA was combined, and its efficacy as a germination activator on the Salt-stressed MTi2 seeds was examined. The data analysis software used was SPSS Windows version 22. To find the significant difference between treatments, data are first subjected to a two-way ANOVA with p≤0.05 confidence level. For purpose of comparing means, DMRT is next applied at a p≤0.05. According to the results, the best concentrations for boosting the germination and early growth of MTi2 seedlings in comparison to the control treatment were found to be 20–30 mM KCl and 0.5–0.75 mM SA. Furthermore, MTi2 seedling germination and early growth were more than 1x higher when the best concentrations of KCl (20-30 mM) and SA (0.5-0.75 mM) were combined. Salicylic acid (SA) and low levels of KCl applied to salt-stressed MTi2 seeds can help reduce the negative effects of salinity stress and enhance the percentage, rate, vigour, length, and biomass of the seedlings that germinate. Conclusion, Salt-stressed MTi2 seeds can benefit from an enhancer that increases germKeywordsination at low concentrations of KCl and SA.
Full-Text [PDF 2806 kb]   (111 Downloads)    
Type of Study: Review/Systemtic review | Subject: Bioactive Compounds
Received: 2023/03/15 | Accepted: 2024/01/21 | Published: 2024/01/21

References
1. Vorasoot N, Songsri P, Akkasaeng C, Jogloy S, and Patanothai A. Effect of water stress on yield and agronomic characters of peanut. Songklanakarin J. Sci. Technol. 2003; 25(3):283-288.
2. Kaur G, Kumar S, Nayyar H, and Upadhyaya HD. Cold Stress Injury during the Pod‐Filling Phase in Chickpea (Cicer arietinum L.): Effects on Quantitative and Qualitative Components of Seeds. Journal of Agronomy and Crop Science 2008; 194(6):457-464.‌ doi:10.1111/j.1439-037X.2008.00336.x
3. Thakur P, Kumar S, Malik JA, Berger JD, and Nayyar H. Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany 2010; 67(3):429-443.‌ doi:10.1016/j.envexpbot.2009.09.004
4. Doupis G, Chartzoulakis K, Beis A, and Patakas A. Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet‐B radiation. Australian Journal of Grape and Wine Research 2011; 17(1):36-42.‌ doi:10.1111/j.1755-0238.2010.00114.x
5. Brinkman R. Saline and sodic soils. In: Land reclamation and water management International Institute for Land Reclamation and Improvement (ILRI). Wageningen, The Netherlands 1980; Pp. 62-68.
6. Hakim MA, Juraimi AS, Hanafi MM, Ali E, Ismail MR, Selamat A, and Karim SR. Effect of salt stress on morpho-physiology, vegetative growth and yield of rice. Journal of Environmental Biology 2014; 35(2):317-326. ‌ PMID: 24665756
7. Flowers TJ, and Muscolo A. Short Communication Special Issue: Physiology and Ecology of Halophytes - Plants Living in Salt-Rich Environments Introduction to the Special Issue: Halophytes in a changing world 2015; 7:1-5. doi: 10.1093/aobpla/plv020.
8. Rowell DL, and Wild A. Soil acidity and alkalinity. Russell's soil conditions and plant growth. Eleventh ed. 1988; Pp. 844-898.‌
9. Hossain N, Muhibbullah M, Ali KMB, and Molla MH. Relationship between Soil Salinity and Physico-chemical Properties of Paddy Field Soils of Jhilwanja :union:, Cox's Bazar, Bangladesh. Journal of Agricultural Science 2015; 7(10):166-180.‌ doi:10.5539/jas.v7n10p166
10. Zhao J, Ren W, Zhi D, Wang L, and Xia G. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Reports 2007; 26(9):1521-1528.‌ doi:10.1007/s00299-007-0362-3
11. Hassan NA, Drew JV, Knudsen D, and Olson RA. Influence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley and corn: I. Barley (Hordeum vulgare L.). Agronomy Journal 1970; 62(1):43-45.‌
12. Sato S, Sakaguchi S, Furukawa H, and Ikeda H. Effects of NaCl application to hydroponic nutrient solution on fruit characteristics of tomato (Lycopersicon esculentum Mill.). Scientia horticulturae 2006; 109(3):248-253.‌ doi:10.1016/j.scienta.2006.05.003
13. Yalpani N, Enyedi AJ, León J, and Raskin I. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 1994; 193(3):372-376.
14. Matsuoka M. Gibberellin signaling: how do plant cells respond to GA signals. Journal of Plant Growth Regulation 2003; 22(2):123-125. doi:10.1007/s00344-003-0039-2
15. Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, and Fatkhutdinova DR. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science 2003; 164(3):317-322.‌ doi:10.1016/S0168-9452(02)00415-6
16. Srivastava NK, and Srivastava AK. Influence of gibberellic acid on 14CO2 metabolism, growth, and production of alkaloids in Catharanthus roseus. Photosynthetica 2007; 45(1):156-160.‌ doi:10.1007/s11099-007-0026-0
17. El-Tayeb MA. Response of barley grains to the interactive e.ect of salinity and salicylic acid. Plant Growth Regulation 2005; 45(3):215-224. doi:10.1007/s10725-005-4928-1
18. Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, and Tari I. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. Journal of plant physiology 2009; 166(9):914-925.‌ doi:10.1016/j.jplph.2008.11.012
19. Grubben GJ, Denton OA. Plant resources of tropical Africa 2. Vegetables. Plant resources of tropical Africa 2. Vegetables 2004; pp.667.
20. Panuccio MR, Jacobsen SE, Akhtar SS, and Muscolo A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. Annals of Botany 2014; 6:plu047. doi:doi.org/10.1093/aobpla/plu047
21. Mohammed SJ, and Nulit R. Seed Priming Improves the Germination and Early Growth of Turnip Seedlings under Salinity Stress Periódico Tchê Química 2020; 17(35):73-82. doi:10.52571/PTQ.v17.n35.2020.07_SAMAR_pgs_73_82.pdf
22. Afzal I, Rauf S, Basra SMA, and Murtaza G. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ 2008; 54(9):382-388.‌
23. Elouaer MA, and Cherif H. Effect of NaCl priming duration and concentration on germination behavior of Tunisian safflower. Journal of Stress Physiology & Biochemistry 2012; 8(3).
24. Achakzai AKK. Effect of water stress on imbibition, germination and seedling growth of maize cultivars. Sarhad J. Agric 2009; 25(2):165-172.‌
25. Kandil AA, Sharief AE, Abido WAE, and Ibrahim MM. Effect of salinity on seed germination and seedling characters of some forage sorghum cultivars. International Journal of Agriculture Sciences 2012; 4(7):306-311. ISSN: 0975-3710 & E-ISSN: 0975-9107
26. Dezfuli P M, Sharif-Zadeh F, and Janmohammadi M. Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.). Journal of Agricultural and Biological Science 2008; 3(3):22-25.‌
27. Abdul-Baki AA, and Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Science 1973; 13(6):630-633.‌
28. Hayat S, Ali B, and Ahmad A. Salicylic acid: biosynthesis, metabolism and physiological role in plants. In Salicylic acid: A plant hormone. Springer, Netherlands 2007;‌ pp. 1-14. doi:10.1007/1-4020-5184-0_1
29. Gharib FA, and Hegazi AZ. Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. Journal of American Science 2010; 6(10):675-683.
30. War AR, Paulraj MG, War MY, and Ignacimuthu S. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant signaling & behavior 2011; 6(11):1787-1792.‌ doi:10.4161/psb.6.11.17685
31. Baninasab B, and Baghbanha MR. Influence of salicylic acid pre-treatment on emergence and early seedling growth of cucumber (Cucumis sativus) under salt stress. International Journal of Plant Production 2013; 7(2).‌
32. Lee S, Kim SG, and Park CM. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist 2010; 188(2):626-637.‌ doi:10.1111/j.1469-8137.2010.03378.x
33. Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology 2000; 124(3):941-948.‌ doi:10.1104/pp.124.3.941
34. Hara M, Furukawa J, Sato A, Mizoguchi T, and Miura K. Abiotic stress and role of salicylic acid in plants. In Abiotic Stress Responses in Plants. Springer, New York‌ 2012; pp. 235-251. doi:10.1007/978-1-4614-0634-1_13
35. Pareek A, Singla, SL, and Grover A. Salt Responsive Proteins/Genes In Crop Plants.In Strategies For Improving Salt Tolerance In Higher Plants (eds P.K.) Jaiwal, R. P. singh, and A. Gulati, Oxford and IBH Puplication Co.,New Delhi 1997; Pp. 365-391.
36. Hussein MM, Balbaa LK, and Gaballah MS. Salicylic acid and salinity effects on growth of maize plants. Research Journal of Agriculture and biological Sciences 2007; 3(4), 321-328.‌
37. Mutlu S, Karadağoğlu Ö, Atici Ö, and Nalbantoğlu B. Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biologia Plantarum 2013; 57(3):507-513.‌ doi:10.1007/s10535-013-0322-4
38. Deef HE. Influence of salicylic acid on stress tolerance during seed germination of Triticum aestivum and Hordeum vulgare. Advances in biological research 2007; 1 (1-2):40-48.‌
39. Ashraf M. Registration of ‘S-24’spring wheat with improved salt tolerance. Journal of plant registrations 2010; 4(1):34-37.‌ doi:10.3198/jpr2008.05.0252crc
40. Noreen S, and Ashraf M. Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis. Pakistan Jurnal Botany 2008; 40(4):1657-1663.‌
41. Pirasteh-Anosheh H, and Emam Y. Manipulation of morpho-physiological traits in bread and durum wheat by using PGRs at different water regimes. J. Crop Prod. Process 2012; 5:29-45.‌ http://dorl.net/dor/20.1001.1.22518517.1391.2.5.3.1
42. Pirasteh-Anosheh H, Emam Y, Ashraf M, and Foolad MR. Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Adv. Stud. Biol. 2012; 11(4):501-520.‌
43. Bahrani A, and Pourreza J. Gibberlic acid and salicylic acid effects on seed germination and seedlings growth of wheat (Triticum aestivum L.) under salt stress condition. World App Sci J 2012; 18(5):633-641.‌
44. Farahbakhsh H. Germination and seedling growth in un-primed and primed seeds of fennel as affected by reduced water potential induced by NaCl. International Research Journal of Applied and Basic Sciences 2012; 3(4): 737-744.‌
45. Naz F, Gul H, and Hamayun M. Effect of NaCl Stress on Pisum sativum Germination and Seedling Growth with the Influence of Seed Priming with Potassium (KCl and KOH). American-Eurasian Journal Agriculture & Environ Science 2014;14 (11):1304-1311. doi:10.5829/idosi.aejaes.2014.14.11.748
46. Ali A, Hyder SI, Arshadullah M, and Bhatti SU. Potasssium chloride as a nutrient seed primer to enhance salttolerance in maize. Pesquisa Agropecuária Brasileira 2012; 47(8):1181-1184.‌ doi:10.1590/S0100-204X2012000800020
47. Leigh RA, and Wyn-Jones RG. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist 1984; 97(1):1-13.‌
48. Wang Y, and Wu WH. Potassium transport and signalling in higher plants. Annual Review of Plant Biology 2013; 64:451-476. doi:10.1146/annurev-arplant-050312-120153
49. Clarkson DT, and Hanson JB. The mineral nutrition of higher plants. Annual review of plant physiology 1980; 31(1):239-298.‌
50. Mitra GN. Chloride (Cl-) Uptake. In Regulation of Nutrient Uptake by Plants, Springer India 2015;‌ Pp. 167-173. doi:10.1007/978-81-322-2334-4_17
51. Talbott LD, and Zeiger E. Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiology 1996; 111(4):1051-1057.‌
52. Santelia D, and Lawson T. Rethinking Guard Cell Metabolism. Plant Physiology 2016; 172(3):1371-1392.‌ doi:10.1104/pp.16.00767
53. Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science 2005; 168(4):521-530.‌ doi:10.1002/jpln.200420485

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.