logo
Volume 7, Issue 1 (2-2025)                   pbp 2025, 7(1): 90-95 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramazani S H R, Khaleghdadi F, Ghaderi M G. Callus formation in Kochia (Kochia Scopora L.) under different hormone concentrations and explant types. pbp 2025; 7 (1) :90-95
URL: http://pbp.medilam.ac.ir/article-1-264-en.html
1- Department of Plant Production and Genetics, Faculty of Agriculture, University of Birjand, Birjand, Iran , hrramazani@birjand.ac.ir
2- Department of Plant Production and Genetics, Faculty of agriculture, university of Birjand, Birjand, Iran
Abstract:   (141 Views)
Kochia is recently used as a forage and medicinal plant resistant to environmental stresses such as salinity and drought. One of the techniques used in biotechnology and plant breeding is tissue culture. Based on this, callus formation and regeneration of Kochia under the influence of hormonal factors and explants types was conducted in a factorial experiment on a completely randomized design with hormonal treatments (9 levels) and explants (3 levels) in 5 replications. After 70 days, the explants were examined for different traits and determined the most suitable explant for callus production. According to the results regarding changes in the percentage of leaf callus formation, the greatest increase was in MS + 0.5 mg/l Kin + 1 mg/l NAA treatment. For callus formation and percentage of direct rooting, there is a significant difference between leaf explants, cotyledon and hypocotyl. But for the percentage of direct regeneration and the percentage of shoot formation, a significant difference has been observed between the leaf explant with cotyledon and the hypocotyl. The results showed that the highest degree of callus formation occurred in the treatment of MS + 0.5 mg/l Kin + 1 mg/l NAA in the leaf and the axis of the cotyledon, and then in the treatments MS + 1 mg/l NAA and MS + 0.05 mg/l BA + 0.5 mg/l NAA is in the organs of cotyledon and the hypocotyl. Finally, 2,4-D could lead to more callus formation of the Kochia and it was observed that no callus formation was done in treatments without hormones. Although, to optimize callus formation and regeneration in this plant, it is suggested to also test the effects of environmental variables such as temperature, humidity, and photoperiod, and different levels of growth hormones such as IBA and GA3.

 
Full-Text [PDF 1215 kb]   (35 Downloads)    
Type of Study: Research | Subject: Herbal Preparations
Received: 2024/11/18 | Accepted: 2024/12/6 | Published: 2025/02/28

References
1. Kafi, M., Nabati, J., Khaninejad, S., Masomi, A., & Aare Mehrjerdi, M. (2011). Evaluation of characteristics forage in different kochia (Kochia Scoparia) ecotypes in tow salinity levels irrigation. Electronic journal of crop production, 4(1), 229-238. [English abstract]
2. Guttieri, M. J., Eberlein, C. V., Thill, D. C. (1995). Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci 43:175–178. DOI: 10.1017/S0043174500081029
3. Salehi, M. Kafi, M. Kiani, A. (2009). Growth Analysis of Kochia (Kochia Scoparia (L.) Schrad) irrigated with saline water in summer cropping. Pakistan Journal of Botany 41(4):1861-1870.
4. Jami Al-Ahmadi, M., Kafi, M., Nasiri Mahalati, M. (2013). Investigating the germination characteristics of broom plant (Kochia Scoparia L.) seed in response to different levels of salinity in a controlled environment. Agricultural Research of Iran, 2(2), 151-159. [English abstract]
5. Jami Al-Ahmadi, M., Kafi, M., Nasiri Mahalati, M. (2017). The effect of salinity on the light efficiency characteristics of broom plant (Kochia Scoparia, L. Schrad). Research and Construction, 21(1 (Issue 78)): 177-185. [English abstract]
6. Foster, C. (1980). Kochia-poor man's alfalfa shows potential as feed. Rangeland, 2:22-23.
7. Madrid, J., Hernandez, F., Pulgar, M.A., Cid, J.M. (1996). Nutritive value of Kochia Scoparia L. and ammoniated barley straw for goats. Small Ruminant Research, 19: 213-218. DOI: 10.1016/0921-4488(95)00758-X
8. Ramazani, S. H.R., Fallahi, H.R., Asadian, A.H. (2017). The effect of low irrigation and consumption of different levels of nitrogen chemical fertilizer on the fodder characteristics of Kochia plant. Plant Ecophysiology Applied Research, 5(1): 1-15. [English abstract]
9. Kim, C. M., Shin, M. K., An, D. K., Lee, K. S. (2006). 3rd ed. Seoul: Jeongdam; The encyclopedia of oriental herbal medicine; pp. 3961–4.
10. Han, H. Y., Kim, H., Son, Y.H., Lee, G., Jeong, S. H., Ryu, M. H. (2014). Anti-cancer effects of Kochia scoparia fruit in human breast cancer cells. Pharmacogn Mag. 2014 (Suppl 3):S661-7. DOI: 10.4103/0973-1296.139812.
11. 11. Matsuda, H., Dai, Y., Ido, Y., Yoshikawa, M., Kubo, M. (1997). Studies on kochiae fructus. IV. Anti-allergic effects of 70% ethanol extract and its component, momordin Ic from dried fruits of Kochia scoparia L. Biol Pharm Bull. 20:1165–70. DOI: 10.1248/bpb.20.1165
12. Cho, H. D., Kim, J. H., Park, J. K., Hong, S. M., Kim, D. H., Seo, K. I. (2019). Kochia scoparia seed extract suppresses VEGF-induced angiogenesis via modulating VEGF receptor 2 and PI3K/AKT/mTOR pathways. Pharm Biol.; 57(1):684-693. DOI: 10.1080/13880209.2019.1672753.
13. Shahin, H. (2019). Callus formation and production of secondary metabolites by seedling explants of Chenopodium quinoa. Egyptian Journal of Botany, 59(2), 451-460. DOI: 10.21608/EJBO.2019.6323.1251
14. Karimian, M.A., Galavi M., Dahmardeh M., Kafi M. (2015). Effect of drought stress and different levels of potassium on quantitative and qualitative forage yield of Kochia (Kochia Scoparia L.). New Findings in Agriculture, 8 (3): 239-250. [English abstract]
15. Gihad, E.A., Shaer H.M. (1992). Utilization of halophytes by livestock on rangelands: Problems and prospects. In: Squires, V.R., Ayoub A.T. Eds. Halophytes as a Resource for Livestock and for Rehabilitation of Degraded Lands. Kluwer Academic Publishers. The Netherlands, Pp: 77-96. DOI: 10.1007/978-94-011-0818-8_6
16. Nabati, J., Kafi, M. Nizami, A., Zare Mehrjardi, M., Rizvani Moghadam, P., Masoumi, A., Zare Mehrjardi, M. (2013). Studying the nutritional value of Kochia Scoparia L. fodder under salinity stress conditions. Environmental stresses in agricultural sciences, 6(2), 123-136. [English abstract]
17. Omidi, M., Peighambari, S. A. Rezaei, A. M., Kouchaki, M., Mazaheri, D., Valizadeh, M., Yazdi Samadi, B. (2019). Qualitative evaluation of scientific journals in the field of agriculture and plant breeding in Iran. Strategic researches in agricultural sciences and natural resources, 5. [English abstract]
18. Jack, E.M., Anatasova, S. & Verkleij, J.A.C. (2005). Callus induction and plant regeneration in the metallophyte Silene vulgaris (Caryophyllaceae). Plant Cell Tissue Organ Cult 80, 25–31 Doi: 10.1007/s11240-004-5789-4
19. Aileni, M., Kokkirala, V. R., Kota, S. R., Umate, P., Abbagani, S. (2008). Efficient in-vitro regeneration from mature leaf explants of scoparia dulcis l., an ethnomedicinal plant. Journal of Herbs Spices & Medicinal Plants Spices & Medicinal Plants (3):200-207. DOI: 10.1080/10496470802598842
21. Khatun, M. K., Haque, M. S., Islam S. and Nasiruddin, K. M. (2008). In vitro regeneration of mungbean (Vigna radiata L.) from different explants. Progress. Agric. 19(2): 13-19, DOI:10.3329/pa.v19i2.16908
22. Chizari, A., Yousefi, A., Mousavi, H. (2015). Investigation of Iran's export target markets for ornamental plants. Journal of Agricultural Economics and Development, 40:55-66.
23. Shojaei, T. R., Salari, V., Ramazan, D., Ehyaei, M., Gharechahi, J., & Chaleshtori, R. M. (2010). The effect of plant growth regulators, explants and cultivars on spinach (Spinacia Oleracea, L.) tissue culture. African Journal of Biotechnology, 9(27), 4179-4185. [English abstract]
24. Fallah Ziarani, M., Haddad, R., Grossi, and Jalali Javaran, M. (2012). In vitro regeneration of spinach, National conference of non-active defense in agriculture sector, Qeshm, 56-72.
25. Eisa, S., Koyro, H. W., Kogel, K. H., & Imani, J. (2005). Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa. Plant cell, tissue and organ culture, 81, 243-246. DOI: 10.1007/s11240-004-4793-z
26. Blázquez C, González-Feria L, Alvarez L, Haro A, Casanova ML, Guzmán M. (2004). Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. Cancer Res. 15; 64(16):5617-23. DOI: 10.1158/0008-5472.CAN-03-3927. PMID: 15313899.
27. Morsi, Nahed A.A. El-Gabry, Y.A. and Abu-Ellail, Farrag F.B. (2019). Indirect regeneration tissue culture and molecular characterization for some sugar beet (Beta vulgaris L.) genotypes. Middle East Journal of Agriculture Research, 8(1): 187-199
28. Bagheri, K., Azadi, P., Gholami, M. and Mir Masoumi, M. (2016). Investigating the effect of some different hormonal treatments and explant type on saffron callus formation. Saffron Agriculture and Technology, 5(3): 231-239. [English abstract]
29. Asghari Zakaria, R., Khazri, M., Zare, N. and Minaei Minabad, S. (2021). The effect of different combinations of plant growth regulators in MS culture medium on callus induction and direct regeneration of Galga medicinal plant. Agricultural Plant Breeding Journal, 13 (37): 94-108. [English abstract]
30. Hesami, M. and Daneshvar, M.H. (2016). Development of a regeneration protocol through indirect organogenesis in Chenopodium quinoa wild. Indo Am J Agric Vet Sci, 4(2): 25-32.
31. Amirkhani, M., Mashayikhi, K. and Mosadaghi, M. (2011). Callus production and somatic embryogenesis of the pasture species Agropyron cristatum in Murashig and Skoog culture medium. Plant Production Research, 17(1): 61-76. [English abstract]
32. Khayatzadeh, M., Nabati-Ahmadi, D., Rajabi-Memari, H. and Abdullahi, M. (2011). Optimization of callus formation and regeneration in two spinach cultivars using three different explants. Journals of Biotechnology in Agriculture, 2(2), 1-6. [English abstract]
33. Custodio, L., Charles, G., Magné, C., Barba-Espín, G., Piqueras, A., Hernández, J. A., Rodrigues, M. J. (2022). Application of In vitro plant tissue culture techniques to halophyte species: A Review. Plants, 12(1), 126. DOI: 10.3390/plants12010126

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.