2. Oludairo OO, Kwaga JK, Kabir J, Abdu PA, Gitanjali A, Perrets A, Aiyedun J. A review on Salmonella characteristics, taxonomy, nomenclature with special reference to non-Typhoidal and Typhoidal salmonellosis. Zagazig Vet J. 2022;50(2):161-176. DOI: 10.21608/zvjz.2022.137946.1179
3. Ehuwa O, Jaiswal AK, Jaiswal S. Salmonella, food safety and food handling practices. Foods. 2021;10(5):907. DOI: 10.3390/foods10050907
4. Popa GL, Papa MI. Salmonella spp. infection-a continuous threat worldwide. Germs. 2021;11(1):88. DOI: 10.18683/germs.2021.1244
5. Galán-Relaño Á, Valero A, Huerta B, Gómez-Gascón L, Mena MÁ, Carrasco E, Pérez F, Astorga RJ. Salmonella and Salmonellosis: An update on public health implications and control strategies. Animals. 2023;13:3666. DOI: 10.3390/ani13233666
6. Marchello CS, Birkhold M, Crump JA, Martin LB, Ansah MO, Breghi G, Tack B. Complications and mortality of non-typhoidal salmonella invasive disease: a global systematic review and meta-analysis. Lancet Infect Dis. 2022;22(5):692-705. DOI: 10.3390/ani13233666
7. Mori N, Szvalb AD, Adachi JA, Tarrand JJ, Mulanovich VE. Clinical presentation and outcomes of non-typhoidal Salmonella infections in patients with cancer. BMC Infect Dis. 2021;21:1-7.DOI: 10.1186/s12879-021-06710-7
8. Qamar FN, Hussain W, Qureshi S. Salmonellosis including enteric fever. Pediatr Clin. 2022;69(1):65-77. https://doi.org/10.1016/j.pcl.2021.09.007
9. Eng SK, Pusparajah P, Ab Mutalib NS, Ser HL, Chan KG, Lee LH. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci. 2015;8(3):284-293. doi: 10.1080/21553769.2015.1051243.
10. Sabeq I, Awad D, Hamad A, Nabil M, Aboubakr M, Abaza M, Edris S. Prevalence and molecular characterization of foodborne and human‐derived Salmonella strains for resistance to critically important antibiotics. Transbound Emerg Dis. 2022;69(5):e2153-e2163. DOI: 10.1111/tbed.14553
11. Sodagari HR, Shrestha RD, Agunos A, Gow SP, Varga C. Comparison of antimicrobial resistance among Salmonella enterica serovars isolated from Canadian turkey flocks, 2013 to 2021. Poult Sci. 2023;102(6). https://doi.org/10.1016/j.psj.2023.102655.
12. Sivanandy P, Yuk LS, Yi CS, Kaur I, Ern FHS, Manirajan P. A systematic review of recent outbreaks and the efficacy and safety of drugs approved for the treatment of Salmonella infections. IJID Regions. 2025;14:100516. https://doi.org/10.1016/j.ijregi.2024.100516.
13. Nazir J, Manzoor T, Saleem A, et al. Combatting Salmonella: a focus on antimicrobial resistance and the need for effective vaccination. BMC Infect Dis. 2025;25:84. https://doi.org/10.1186/s12879-025-10478-5.
14. Mudenda S, Chabalenge B, Daka V, Mfune RL, Salachi KI, Mohamed S, Matafwali SK. Global strategies to combat antimicrobial resistance: a one health perspective. Pharmacol Pharm. 2023;14(8):271-328. https://doi.org/10.4236/pp.2023.148020
15. Stephen J, Radhakrishnan M. Avocado (Persea americana Mill.) fruit: nutritional value, handling and processing techniques, and health benefits. J Food Process Preserv. 2022;46(12):e17207. https://doi.org/10.1111/jfpp.17207
16. Marra A, Manousakis V, Zervas GP, Koutis N, Finos MA, Adamantidi T, Tsoupras A. Avocado and its by-products as natural sources of valuable anti-inflammatory and antioxidant bioactives for functional foods and cosmetics with health-promoting properties. Appl Sci. 2024;14(14):5978. DOI https://doi.org/10.3390/app14145978
17. Sánchez-Quezada V, Gaytán-Martínez M, Recio I, Loarca-Piña G. Avocado seed by-product uses in emulsion-type ingredients with nutraceutical value: stability, cytotoxicity, nutraceutical properties, and assessment of in vitro oral-gastric digestion. Food Chem. 2023;421:136118. DOI: 10.1016/j.foodchem.2023.136118
18. 17.Pacios O, Blasco L, Bleriot I, Fernandez-Garcia L, González Bardanca M, Ambroa A, Tomás M. Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics. 2020;9(2):65. DOI: 10.3390/antibiotics9020065
19. Endale H, Mathewos M, Abdeta D. Potential causes of spread of antimicrobial resistance and preventive measures in one health perspective—a review. Infect Drug Resist. 2023;7515-7545. DOI: 10.2147/IDR.S428837
20. Oluyele O, Oladunmoye MK, Ogundare AO, Onifade AK, Okunnuga NA. Microbial spectrum and susceptibility profile of opportunistic pathogens isolated from cancer patients attending a tertiary healthcare centre in Akure, Nigeria. Microbes Infect Chemother. 2023;3:1-10. DOI: 10.54034/mic.e1961
21. Ogbole OO, Nkumah A, Akinleye TE, Olisaedu FE, Attah AF. Evaluation of multifunctional activity of bioactive peptide fractions from the leaves of Nauclea diderrichii (De Wild. and T. Durand) Merrill and Ixora brachypoda DC. Phytomedicine Plus. 2021;1:100019. https://doi.org/10.1016/j.phyplu.2021.100019
22. Oluyele O, Oladunmoye MK. Susceptibility patterns of Staphylococcus aureus isolated from wound swabs to extracts of Vernonia amygdalina. J Adv Med Pharm Sci. 2017;13(4):1-11. DOI: 10.9734/JAMPS/2017/33837
23. Singh G, Katoch M. Antimicrobial activities and mechanism of action of Cymbopogon khasianus (Munro ex Hackel) Bor essential oil. BMC Complement Med Ther. 2020;20:331. DOI: 10.1186/s12906-020-03112-1
24. Vera-Cespedes N, Muñoz LA, Rincón MA, Haros CM. Physico-Chemical and Nutritional Properties of Chia Seeds from Latin American Countries. Foods. 2023;12(16):3013. DOI: 10.3390/foods12163013
25. Omoboyowa DA. Exploring molecular docking with E-pharmacophore and QSAR models to predict potent inhibitors of 14-α-demethylase protease from Moringa spp. Pharmacol Res Mod Chin Med. 2022;1(4):100147. http://dx.doi.org/10.2139/ssrn.4164406
26. Oluyele O, Oladunmoye MK, Ogundare AO. Toxicity Studies on Essential Oil from Phoenix dactylifera (L.) Seed in Wistar Rats. Biologics. 2022;2:69–80. DOI: 10.3390/biologics2010006
27. Isirima JC, Siminialayi IM. Effect of Chromolaena odorata Extraction Hematotoxicity and Spleen Histopathology Induced by Salmonella typhi in Wistar Rats. Pharmacol Pharm. 2018;9:85-99. https://doi.org/10.4236/pp.2018.94007
28. Rivero-Pino F, Leon MJ, Millan-Linares MC, Montserrat-de la Paz S. Antimicrobial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems, Trends in Food Science & Technology, Volume 135, 2023, Pages 32-42, ISSN 0924-2244, https://doi.org/10.1016/j.tifs.2023.03.005.
29. Valdez-Miramontes CE, Haro-Acosta JD, Aréchiga-Flores CF, et al. Antimicrobial peptides in domestic animals and their applications in veterinary medicine. Peptides. 2021;142:170576. DOI: 10.1016/j.peptides.2021.170576.
30. Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. https://doi.org/10.1186/s40779-021-00343-2.
31. Li, S.; Wang, Y.; Xue, Z.; Jia, Y.; Li, R.; He, C.; Chen, H. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends Food Sci. 2021, 109, 103–115. https://doi.org/10.1016/j.tifs.2021.01.005.
32. Yang F, Chen X, Huang M, et al. Molecular characteristics and structure–activity relationships of food-derived bioactive peptides. J Integr Agric. 2021;20:2313-2332. DOI: 10.1016/S2095-3119(20)63463-3
33. Lee TH, Hall KN, Aguilar MI. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem. 2016;16:25-39. DOI: 10.2174/1568026615666150703121700
34. 33.Kyahar FI, Onwuliri EA, Ehinmidu JO, Oladosu PO. Time-kill kinetics and antibacterial activity of root extract of Adenodolichos paniculatus (Hua) Hutch & Dalz (Fabaceae). J Pharm Bioresour. 2021;18(2):95-102. https://dx.doi.org/10.4314/jpb.v18i2.2
35. Ohaegbu CG, Ngene AC, Idu EG, Odo ES. Time-kill kinetics and antibacterial activity of ethanolic extract of Allium sativum. Microbes Infect Dis. 2024;5(1):389-397. DOI: 10.21608/mid.2023.175501.1417
36. Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol. 2011;92(3):479–497. DOI: 10.1007/s00253-011-3557-z
37. Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules. 2020;25(23):5662. DOI: 10.3390/molecules25235662
38. Oyedemi OM, Oyedemi SO, Swain SS, Prieto JM, Stapleton P. Bactericidal and antibiotic-modulation activities of methanol crude extracts of Ligustrum lucidum and Lobelia inflata against MRSA phenotypes: Molecular docking studies of some isolated compounds from both plants against DNA gyrase A. S Afr J Bot. 2020;130:54-63. DOI:10.1016/j.sajb.2019.11.010
39. Sirajum M, Shahnaj P, Mahci AB, Shahnaz P, Ekramul I, Junaid H. HPLC analysis, molecular docking of phenolic compounds and screening of antioxidant and cytotoxic potential of Diospyros malabarica bark extract. Phytomedicine Plus. 2024;4(4):100657. DOI: 10.1016/j.phyplu.2024.100657
40. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem: the PubChem Project. Nucleic Acids Res. 2016;44(D1):D1202–D1213. DOI: 10.1093/nar/gkv951
41. Walters WP. Going further than Lipinski’s rule in drug design. Expert Opin Drug Discov. 2012;7(2):99-107. DOI: 10.1517/17460441.2012.648612
42. Lohar PS, Lohar MS, Roychoudhury S. Erythropoitic Effects of Some Medicinal Plants of India on Experimental Rat Model. 2009. https://api.semanticscholar.org/CorpusID:51994336
43. Oluyele O, Falowo DE, Oladunmoye MK, Owoyemi OO, Olotu EJ. Effects of Bidens pilosa (L) Extract on Haematological Parameters of Swiss Albino Rats Orogastrically Dosed With Escherichia coli O157:H7. Eur J Med Health Sci. 2020;2(2):1-4. https://doi.org/10.24018/ejmed.2020.2.2.236
44. Yapo FA, Yapi FH, Ahiboh H, Hauhouot-Attounbre ML, Guédé NZ, Djaman JA, Monne D. Immunomodulatory Effect of the Aqueous Extract of Erigeron floribundus (Kunth) Sch Beep (Asteraceae) Leaf in Rabbits. Trop J Pharm Res. 2011;10(2):187. https://doi.org/10.4314/TJPR.V10I2.66562
45. Bashir L, Oluwatosin KS, Ibrahim AR, Adeniyi AO, Prince CO. Effect of Methanol Extract of Telfairia occidentalis on Haematological Parameters in Wistar Rats. J Med Sci. 2015;15(5):246-250. DOI: 10.3923/jms.2015.246.250
46. Hongxiu F, Hongcheng L, Yanrong Z, Shanshan Z, Tingting L, Dawei W. Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development. J Future Foods. 2022;2(2):143-159. https://doi.org/10.1016/j.jfutfo.2022.03.003
47. Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci. 2021;22(21):11401. DOI: 10.3390/ijms222111401