1. Salgado VG, de Viera Barreto JN, Rodríguez Cravero JF, Grossi MA, Gutiérrez DG. Factors influencing the global invasion of the South American weedy species Praxelis clematidea (Asteraceae): a niche shift and modelling based approach. Bot J Linn Soc. 2024. https://doi.org/10.1093/botlinnean/boae079
2. Yu SS, Song CS, Song WW. Occurrence of Praxelis clematidea witches’ broom disease associated with 16SrI group ‘Candidatus Phytoplasma asteris’ in Hainan Island of China. Plant Dis. 2024. Published online April 8. https://doi.org/10.1094/PDIS-01-24-0063-PDN
3. Wardini TH, Afifa IN, Esyanti RR, Astutiningsih NT, Pujisiswanto HA. The potential of invasive species Praxelis clematidea extract as a bioherbicide for Asystasia gangetica. Biodiversitas. 2023;24:4738–46. https://doi.org/10.13057/biodiv/d240914
4. Wang J, Zhao M, Zhang J, Zhao B, Lu X, Wei H. Characterization and utilization of biochars derived from five invasive plant species Bidens pilosa L., Praxelis clematidea, Ipomoea cairica, Mikania micrantha and Lantana camara L. for Cd²⁺ and Cu²⁺ removal. J Environ Manage. 2021;280:111746. https://doi.org/10.1016/j.jenvman.2020.111746
5. Maia GL, Falcão-Silva VS, Aquino PG, de Araújo-Júnior JX, Tavares JF, da Silva MS, Rodrigues LC, de Siqueira-Júnior JP, Barbosa-Filho JM. Flavonoids from Praxelis clematidea R.M. King and Robinson modulate bacterial drug resistance. Molecules. 2011;16(6):4828–35. https://doi.org/10.3390/molecules16064828
6. Liang S, Wang L, Xiong Z, Zeng J, Xiao L, Xu J, et al. Anti-inflammatory phenolics and phenylpropanoids from Praxelis clematidea. Fitoterapia. 2023;167:105476. https://doi.org/10.1016/j.fitote.2023.105476
7. Shelly. Praxelis clematidea: The hidden herb that supports your health in surprising ways. 2025 Feb 13. Available from: https://1millionideas.com/health-benefits-of-praxelis-clematidea?utm_source=organic&utm_medium=bing&utm_campaign=Shelly&utm_content=health-wellness&utm_term=2-2025
8. Wawstock. Praxelis clematidea: Benefits and uses of this medicinal plant. 2025 Feb 10. Available from: https://wawstock.com/2025/02/10/praxelis-clematidea-benefits-and-uses-of-this-medicinal-plant/
9. Xiao L, Huang Y, Wang Y, Xu J, He X. Anti-neuroinflammatory benzofurans and lignans from Praxelis clematidea. Fitoterapia. 2020;140:104440. https://doi.org/10.1016/j.fitote.2019.104440
10. Silva DF, Albuquerque ACL, Lima EO, Baeder FM, Luna ABH, Ribeiro ED, et al. Antimicrobial and anti-adherent potential of the ethanolic extract of Praxelis clematidea (Griseb.) R.M. King & Robinson on pathogens found in the oral cavity. Res Soc Dev. 2020;9(10). http://dx.doi.org/10.33448/rsd-v9i10.9237
11. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. https://doi.org/10.1016/j.foodchem.2022.132531
12. Intharuksa A, Kuljarusnont S, Sasaki Y, Tungmunnithum D. Flavonoids and other polyphenols: bioactive molecules from traditional medicine recipes/medicinal plants and their potential for phytopharmaceutical and medical application. Molecules. 2024;29(23):5760. https://doi.org/10.3390/molecules29235760
13. Adamski Z, Blythe LL, Milella L, Bufo SA. Biological activities of alkaloids: from toxicology to pharmacology. Toxins. 2020;12(4):210. https://doi.org/10.3390/toxins12040210
14. Kumar Dash D, Kishore Tyagi C, Kumar Sahu A, Tripathi V. Revisiting the medicinal value of terpenes and terpenoids. In: IntechOpen. 2022. https://doi.org/10.5772/intechopen.102612
15. Kaushik B, Sharma J, Kumar P, Shourie A. Phytochemical properties and pharmacological role of plants: secondary metabolites. Biosci Biotechnol Res Asia. 2021;18(1):23. https://doi.org/10.13005/bbra/2894
16. Umamaheswari D, Muthuraja R, Kumar M, Venkateswarlu BS. Standardization of herbal drugs–an overview. Int J Pharm Sci Rev Res. 2021;68(1):213–9. http://dx.doi.org/10.47583/ijpsrr.2021.v68i01.033
17. European Pharmacopoeia (Ph. Eur.) — 11th Edition. Strasbourg: European Directorate for the Quality of Medicines & HealthCare (EDQM); 2023. Contains general chapters and monographs on herbal drugs and herbal preparations; Ph. Eur. is legally binding in member states. Available from: https://www.edqm.eu/en/european-pharmacopoeia-ph.-eur.-11th-edition
18. European Directorate for the Quality of Medicines & HealthCare (EDQM). Guide for the elaboration of monographs on herbal drugs and herbal drug preparations. Strasbourg: EDQM; 2023. Guidance for authors and laboratories preparing Ph. Eur. herbal monographs. Available from: https://www.edqm.eu/en/d/1766460
19. Zaman W. Morphology, Palynology and Phytochemicals of Medicinal Plants. Horticulturae. 2024; 10(3):202. https://doi.org/10.3390/horticulturae10030202
20. Giacò A, De Giorgi P, Astuti G, Caputo P, Serrano M, Carballal R, Sáez L, Bacchetta G, Peruzzi L. A morphometric analysis of the Santolina chamaecyparissus complex (Asteraceae). Plants. 2022;11(24):3458. https://doi.org/10.3390/plants11243458
21. Zubairova US, Fomin IN, Koloshina KA, Barchuk AI, Erst TV, Chalaya NA, Gerasimova SV, Doroshkov AV. Image-based quantitative analysis of epidermal morphology in wild potato leaves. Plants. 2024;13(21):3084. Available from: https://doi.org/10.3390/plants13213084
22. Deepak Rajput. Quantitative microscopy of crude drugs: leaf constant method. Pharma Academias. 2024 May 10. Available from: https://www.pharmaacademias.com/quantitative-microscopy-of-crude-drugs-leaf-constant-method/
23. Das Sarkar R, Roy GS. Micro-qualification by estimation of leaf constants of the ethnobotanical plant Costus igneus N.E. Br by optical microscopical analysis. World Journal of Biology Pharmacy and Health Sciences. 2023;13(3):120–127. Available from: https://doi.org/10.30574/wjbphs.2023.13.3.0130
24. Singla C, editor. Recent advances in pharmaceutical sciences. Vol. 6. New Delhi: AkiNik Publications; 2021. 125 p. ISBN: 978-93-91538-19-4. https://doi.org/10.22271/ed.book.1318
25. Owolabi T, Osaretin D, Eyinayan B. Bioactive composition and TLC profile data on Pax Herbal Malatreat Tea. Drug Anal Res. 2022;6(1):35–9. https://doi.org/10.22456/2527-2616.125038
26. OECD guidelines for testing of chemicals No. 423 (acute oral toxicity – acute toxic class method). Paris: OECD; 2001. p.2–5 [cited 2022 Dec 16]. Available from: https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicityacute-toxic-class-method_9789264071001-en
27. Gothe SR, Pawade UV, Nikam AV, Anjankar MP. OECD guidelines for acute oral toxicity studies: an overview. Int J Res Ayurveda Pharm. 2023;14(4):137–40. http://dx.doi.org/10.7897/2277-4343.1404130
28. Intanon S, Wiengmoon B, Mallory Smith CA. Seed morphology and allelopathy of invasive Praxelis clematidea. Not Bot Horti Agrobo. 2020;48(1). https://doi.org/10.15835/nbha48111831
29. Wang JG, Wu JW, Li WJ. Ecological niche changes and risk regionalization of the invasive plant Praxelis clematidea. Ecol Evol. 2025;15(6):e71546. https://doi.org/10.1002/ece3.71546
30. Barone G, Domina G, Bartolucci F, Galasso G, Peruzzi L. A nomenclatural and taxonomic revision of the Senecio squalidus group (Asteraceae). Plants. 2022;11(19):2597. https://doi.org/10.3390/plants11192597
31. Ekeke C, Ogazie CA. Systematic significance of petiole anatomical characteristics in some members of Asteraceae from some parts of Nigeria. Singapore J Sci Res. 2020;10:387–399. https://scialert.net/abstract/?doi=sjsres.2020.387.399
32. Borsuk AM, Roddy AB, Théroux-Rancourt G, Brodersen CR. Structural organization of the spongy mesophyll. New Phytol. 2022;234(3):946–960. Available from: https://doi.org/10.1111/nph.17971
33. World Health Organization. Draft WHO traditional medicine strategy: 2025–2034. Geneva: World Health Organization; 2025. https://cdn.who.int/media/docs/default-source/tci/draft-traditional-medicine-strategy-2025-2034.pdf
34. Ansari P, Reberio AD, Ansari NJ, Kumar S, Khan JT, Chowdhury S, Abd El-Mordy FM, Hannan JMA, Flatt PR, Abdel-Wahab YHA, Seidel V. Therapeutic potential of medicinal plants and their phytoconstituents in diabetes, cancer, infections, cardiovascular diseases, inflammation and gastrointestinal disorders. Biomedicines. 2025;13(2):454. Available from: https://doi.org/10.3390/biomedicines13020454
35. Bhambhani S, Kondhare KR, Giri AP. Diversity in chemical structures and biological properties of plant alkaloids. Molecules. 2021;26(11):3374. https://doi.org/10.3390/molecules26113374
36. Prajapati AK, Shah G. Alkaloids and their mechanisms of action in cardiovascular diseases. Int J Drug Discov Pharmacol. 2025;4(3):100017. https://doi.org/10.53941/ijddp.2025.100017
37. Zhou Y, Chen Y, He H, Peng M, Zeng M, Sun H. The role of indoles in the microbiota–gut–brain axis and potential therapeutic targets: A focus on human neurological and neuropsychiatric diseases. Neuropharmacology. 2023;239:109690. https://doi.org/10.1016/j.neuropharm.2023.109690
38. Basavarajaiah SM, Pattanashettar R, Yernale NG. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg Med Chem. 2021;32:115973. https://doi.org/10.1016/j.bmc.2020.115973
39. Letchuman S, Madhuranga HDT, Madhurangi BLNK, Premarathna AD, Saravanan M. Alkaloids unveiled: A comprehensive analysis of novel therapeutic properties, mechanisms, and plant-based innovations. Intell Pharm. 2025;3(4):268–276. https://doi.org/10.1016/j.ipha.2024.09.007
40. Jayawickreme K, Świstak D, Ozimek E, Reszczyńska E, Rysiak A, Makuch-Kocka A, Hanaka A. Pyrrolizidine alkaloids—Pros and cons for pharmaceutical and medical applications. Int J Mol Sci. 2023;24(23):16972. https://doi.org/10.3390/ijms242316972
41. Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. Flavonoids: structure–function and mechanisms of action and opportunities for drug development. Toxicol Res. 2021;37(2):147–162. https://doi.org/10.1007/s43188-020-00080-z
42. Hamsalakshmi A, Alex AM, Arehally Marappa M, et al. Therapeutic benefits of flavonoids against neuroinflammation: a systematic review. Inflammopharmacol. 2022;30:111–136. https://doi.org/10.1007/s10787-021-00895-8
43. Gajender, Mazumder A, Sharma A, Azad MAK. A comprehensive review of the pharmacological importance of dietary flavonoids as hepatoprotective agents. Evid Based Complement Altern Med. 2023;2023:4139117. https://doi.org/10.1155/2023/4139117
44. Barreca MM, Alessandro R, Corrado C. Effects of flavonoids on cancer, cardiovascular and neurodegenerative diseases: Role of NF-κB signaling pathway. Int J Mol Sci. 2023;24(11):9236. https://doi.org/10.3390/ijms24119236
45. Hamsalakshmi A, Alex AM, Arehally Marappa M, et al. Therapeutic benefits of flavonoids against neuroinflammation: a systematic review. Inflammopharmacol. 2022;30:111–136. https://doi.org/10.1007/s10787-021-00895-8
46. Gajender, Mazumder A, Sharma A, Azad MAK. A comprehensive review of the pharmacological importance of dietary flavonoids as hepatoprotective agents. Evid Based Complement Altern Med. 2023;2023:4139117. https://doi.org/10.1155/2023/4139117
47. Boncan DAT, Tsang SSK, Li C, Lee IHT, Lam HM, Chan TF, Hui JHL. Terpenes and terpenoids in plants: interactions with environment and insects. Int J Mol Sci. 2020;21:7382. https://doi.org/10.3390/ijms21197382
48. Naji EF, Abdulfatah HF, Hashim KS. Plant secondary metabolites, their classification and biological roles: a review. J Univ Anbar Pure Sci. 2024;18(1). https://doi.org/10.37652/juaps.2023.144549.1164
49. Bergman ME, Davis B, Phillips MA. Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action. Molecules. 2019;24(21):3961. https://doi.org/10.3390/molecules24213961
50. Lanier ER, Andersen TB, Hamberger B. Plant terpene specialized metabolism: complex networks or simple linear pathways? Plant J. 2023;114:1178–1201. https://doi.org/10.1111/tpj.16177
51. Mukherjee PK, Banerjee S, Kar A, Chaudhary SK, Bhardwaj PK, Haldar PK, Sharma N. Synergy and network pharmacology—Establishing the efficacy of herbal medicine. In: Mukherjee PK, ed. Evidence-Based Validation of Herbal Medicine. 2nd ed. Amsterdam: Elsevier; 2022:501–510. https://doi.org/10.1016/B978-0-323-85542-6.00017-2
52. Chaachouay N. Synergy, additive effects, and antagonism of drugs with plant bioactive compounds. Drugs Drug Candidates. 2025;4(1):4. https://doi.org/10.3390/ddc4010004
53. Smith RJ, Brown LM. Evaluating the biological efficacy of fractionated natural extracts. Phytother Res. 2024;38(5):1821–34. https://doi.org/10.1002/ptr.7840