logo
Volume 5, Issue 1 (6-2023)                   pbp 2023, 5(1): 45-57 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Etemadi N. Effect of Zinc Nanoparticles of Aqueous Extract of Matricaria chamomilla on the Prevention of Gastric Ulcer Caused by Alcohol. pbp 2023; 5 (1) :45-57
URL: http://pbp.medilam.ac.ir/article-1-190-en.html
DVM Graduate, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran , za@ymail.com
Abstract:   (1011 Views)
Background: Many people in the world suffer from gastroduodenal ulcers, therefore, studying the therapeutic strategies of these ulcers are considered as the research priorities in any country. The aim of this study was to survey the preventive property of zinc nanoparticles of Matricaria chamomilla on ethanol-induced gastroduodenal ulcers in rats.
Methods: In this study, 30 adult females rats were divided into 5 groups, randomly: negative healthy control receiving distilled water, untreated negative control receiving distilled water, positive control receiving omeprazole 60 mg/kg, one group receiving the aqueous extract of M. chamomilla at 200 mg/kg concentrations, and another group receiving the zinc nanoparticles of aqueous extract M. chamomilla at 0.5mg/kg concentrations. After 14 days, gastroduodenal ulcers were caused by ethanol. Four hours after oral administration of ethanol, the stomach, and duodenum samples of the rats were dissected. Malondialdehyde, Superoxide dismutase activity, and prevention index were measured and histopathological studies were performed.
Results: The zinc nanoparticles of aqueous extract M. chamomilla could significantly decrease the raised levels of MDA and INU and enhance SOD and IU as compared to other groups. Also, the zinc nanoparticles of aqueous extract prevented significantly small, medium, and large gastroduodenal ulcers as compared to other groups.
Conclusion: It seems that the zinc nanoparticles of aqueous extract M. chamomilla can prevent gastroduodenal ulcers in rats without any side effect.
Full-Text [PDF 3100 kb]   (416 Downloads)    
Type of Study: Research | Subject: Herbal Drugs
Received: 2023/06/12 | Accepted: 2023/03/1 | Published: 2023/05/31

References
1. M. Rajilic-Stojanovic, C. Figueiredo, A. Smet, R. Hansen, J. Kupcinskas, T. Rokkas, L. Andersen, J.C. Machado, G. Ianiro, A. Gasbarrini, M. Leja, J.P. Gisbert, G.L. Hold, Systematic review: gastric microbiota in health and disease, Aliment. Pharmacol. Ther. 51 (2020) 582–602. https://doi.org/10.1111/apt.15650.
2. N. Kangwan, Quality of healing of gastric ulcers: Natural products beyond acid suppression, World J. Gastrointest. Pathophysiol. 5 (2014) 40. https://doi.org/10.4291/wjgp.v5.i1.40.
3. G.B. Glavin, S. Szabo, Experimental gastric mucosal injury: laboratory models reveal mechanisms of pathogenesis and new therapeutic strategies, FASEB J. 6 (1992) 825–831. https://doi.org/10.1096/fasebj.6.3.1740232.
4. M.E. Balogun, J.O. Oji, E.E. Besong, A.A. Ajah, E.M. Michael, Anti-ulcer activity of aqueous leaf extract of Nauclea latifolia (rubiaceae) on indomethacin-induced gastric ulcer in rats, African J. Biotechnol. 12 (2013) 5080–5086. https://doi.org/10.5897/ajb2013.12788.
5. L. L., T. K., T. A., Gastric Mucosal Defense and Cytoprotection: Bench to Bedside, Gastroenterology. 135 (2008) 41–60. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed8&NEWS=N&AN=2008311506.
6. K.R. DeVault, N.J. Talley, Insights into the future of gastric acid suppression, Nat. Rev. Gastroenterol. Hepatol. 6 (2009) 524–532. https://doi.org/10.1038/nrgastro.2009.125.
7. A. Franke, S. Teyssen, M. V. Singer, Alcohol-related diseases of the esophagus and stomach, Dig. Dis. 23 (2006) 204–213. https://doi.org/10.1159/000090167.
8. I. Szelenyi, K. Brune, Possible role of oxygen free radicals in ethanol-induced gastric mucosal damage in rats, Dig. Dis. Sci. 33 (1988) 865–871. https://doi.org/10.1007/BF01550977.
9. F. Zhang, L. Wang, J.J. Wang, P.F. Luo, X.T. Wang, Z.F. Xia, The caspase-1 inhibitor AC-YVAD-CMK attenuates acute gastric injury in mice: Involvement of silencing NLRP3 inflammasome activities, Sci. Rep. 6 (2016). https://doi.org/10.1038/srep24166.
10. M.S. Shin, J. Lee, J.W. Lee, S.H. Park, I.K. Lee, J.A. Choi, J.S. Lee, K.S. Kang, Anti-inflammatory effect of artemisia argyi on ethanol-induced gastric ulcer: Analytical, in vitro and in vivo studies for the identification of action mechanism and active compounds, Plants. 10 (2021) 1–13. https://doi.org/10.3390/plants10020332.
11. C.A. Hiruma-Lima, J.S. Gracioso, W. Toma, A.B. Almeida, A.C. Paula, D.S.B. Brasil, A.H. Muller, A.R.M. Souza Brito, A.R.M. Souza Brito, Gastroprotective effect of aparisthman, a diterpene isolated from Aparisthmium cordatum, on experimental gastric ulcer models in rats and mice, Phytomedicine. 8 (2001) 94–100. https://doi.org/10.1078/0944-7113-00017.
12. S.H. Lee, Y. Ding, X.T. Yan, Y.H. Kim, H.D. Jang, Scopoletin and scopolin isolated from Artemisia iwayomogi suppress differentiation of osteoclastic macrophage RAW 264.7 cells by scavenging reactive oxygen species, J. Nat. Prod. 76 (2013) 615–620. https://doi.org/10.1021/np300824h.
13. C. Yun, Y. Jung, W. Chun, B. Yang, J. Ryu, C. Lim, J.H. Kim, H. Kim, S.I. Cho, Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis in Vitro and in Vivo, Mediators Inflamm. 2016 (2016). https://doi.org/10.1155/2016/8027537.
14. N. Amat, H. Upur, B. Blažeković, In vivo hepatoprotective activity of the aqueous extract of Artemisia absinthium L. against chemically and immunologically induced liver injuries in mice, J. Ethnopharmacol. 131 (2010) 478–484. https://doi.org/10.1016/j.jep.2010.07.023.
15. M. Habib, I. Waheed, Evaluation of anti-nociceptive, anti-inflammatory and antipyretic activities of Artemisia scoparia hydromethanolic extract, J. Ethnopharmacol. 145 (2013) 18–24. https://doi.org/10.1016/j.jep.2012.10.022.
16. J.H. Wang, M.K. Choi, J.W. Shin, S.Y. Hwang, C.G. Son, Antifibrotic effects of Artemisia capillaris and Artemisia iwayomogi in a carbon tetrachloride-induced chronic hepatic fibrosis animal model, J. Ethnopharmacol. 140 (2012) 179–185. https://doi.org/10.1016/j.jep.2012.01.007.
17. A. A., G. L.A., E.J. H., M. P.C., Antioxidant and antitumor activities of Artemisia campestris and Thymelaea hirsuta from southern Tunisia, Food Chem. Toxicol. 49 (2011) 342–347. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&NEWS=N&AN=2011052067.
18. S. M., T. A., H. F.B., S. N., B. T., Z. N., Protective effects of Artemisia campestris upon fenthion-induced nephrotoxicity in adult rats and their progeny, Gen. Physiol. Biophys. 32 (2013) 577–588. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L372329473%0Ahttp://dx.doi.org/10.4149/gpb_2013047.
19. H.A.A. Twaij, A.A. Al-Badr, Hypoglycemic activity of Artemisia herba alba, J. Ethnopharmacol. 24 (1988) 123–126. https://doi.org/10.1016/0378-8741(88)90143-2.
20. W.H. El-Tantawy, Biochemical effects, hypolipidemic and anti-inflammatory activities of Artemisia vulgaris extract in hypercholesterolemic rats, J. Clin. Biochem. Nutr. 57 (2015) 33–38. https://doi.org/10.3164/jcbn.14-141.
21. D. Jeong, Y.S. Yi, G.H. Sung, W.S. Yang, J.G. Park, K. Yoon, D.H. Yoon, C. Song, Y. Lee, M.H. Rhee, T.W. Kim, J.H. Kim, J.Y. Cho, Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract, J. Ethnopharmacol. 152 (2014) 487–496. https://doi.org/10.1016/j.jep.2014.01.030.
22. J.-S. Park, O.-S. Bang, J. Kim, Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line, Integr. Med. Res. 3 (2014) 67–73. https://doi.org/10.1016/j.imr.2013.10.004.
23. A.M. Zimmermann-Klemd, J.K. Reinhardt, A. Morath, W.W. Schamel, P. Steinberger, J. Leitner, R. Huber, M. Hamburger, C. Gründemann, Immunosuppressive Activity of Artemisia argyi Extract and Isolated Compounds, Front. Pharmacol. 11 (2020). https://doi.org/10.3389/fphar.2020.00402.
24. D.E. Kim, K. jin Min, M.J. Kim, S.H. Kim, T.K. Kwon, Hispidulin inhibits mast cell-mediated allergic inflammation through down-regulation of histamine release and inflammatory cytokines, Molecules. 24 (2019). https://doi.org/10.3390/molecules24112131.
25. T. Dvir, B.P. Timko, D.S. Kohane, R. Langer, Nanotechnological Strategies for Engineering Complex Tissues, Nano-Enabled Med. Appl. (2020) 351–382. https://doi.org/10.1201/9780429399039-12.
26. S.E. McNeil, Unique benefits of nanotechnology to drug delivery and diagnostics., Methods Mol. Biol. 697 (2011) 3–8. https://doi.org/10.1007/978-1-60327-198-1_1.
27. D.A. La Van, D.M. Lynn, R. Langer, Moving smaller in drug discovery and delivery, Nat. Rev. Drug Discov. 1 (2002) 77–84. https://doi.org/10.1038/nrd707.
28. F. Léonard, A.A. Talin, Electrical contacts to one- and two-dimensional nanomaterials, Nat. Nanotechnol. 6 (2011) 773–783. https://doi.org/10.1038/nnano.2011.196.
29. J. Das, M. Paul Das, P. Velusamy, Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 104 (2013) 265–270. https://doi.org/10.1016/j.saa.2012.11.075.
30. A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv. 31 (2013) 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003.
31. S. Hemmati, A. Rashtiani, M.M. Zangeneh, P. Mohammadi, A. Zangeneh, H. Veisi, Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens, Polyhedron. 158 (2019) 8–14. https://doi.org/10.1016/j.poly.2018.10.049.
32. H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95 (1979) 351–358. https://doi.org/10.1016/0003-2697(79)90738-3.
33. M. Nishikimi, N. Appaji Rao, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen, Biochem. Biophys. Res. Commun. 46 (1972) 849–854. https://doi.org/10.1016/S0006-291X(72)80218-3.
34. P.A. Nwafor, F.K. Okwuasaba, L.G. Binda, Antidiarrhoeal and antiulcerogenic effects of methanolic extract of Asparagus pubescens root in rats, J. Ethnopharmacol. 72 (2000) 421–427. https://doi.org/10.1016/S0378-8741(00)00261-0.
35. Z. Rahman, D.K. Dwivedi, G.B. Jena, Ethanol-induced gastric ulcer in rats and intervention of tert-butylhydroquinone: Involvement of Nrf2/HO-1 signalling pathway, Hum. Exp. Toxicol. 39 (2020) 547–562. https://doi.org/10.1177/0960327119895559.
36. B. Al-Dabbagh, I.A. Elhaty, M. Elhaw, C. Murali, A. Al Mansoori, B. Awad, A. Amin, Antioxidant and anticancer activities of chamomile (Matricaria recutita L.), BMC Res. Notes. 12 (2019). https://doi.org/10.1186/s13104-018-3960-y.
37. M. Cemek, E. Yilmaz, M.E. Büyükokuroĝlu, Protective effect of Matricaria chamomilla on ethanol-induced acute gastric mucosal injury in rats, Pharm. Biol. 48 (2010) 757–763. https://doi.org/10.3109/13880200903296147.
38. S. Karbalay-Doust, A. Noorafshan, Antiulcerogenic effects of Matricaria chamomilla extract in experimental gastric ulcer in mice, Iran. J. Med. Sci. 34 (2009) 198–203.
39. V. Mamillapalli, A.M. Atmakuri, P. Khantamneni, Nanoparticles for herbal extracts, Asian J. Pharm. 10 (2016) S54–S60.
40. S. Hassani, Y. Pellequer, A. Lamprecht, Selective Adhesion of Nanoparticles to Inflamed Tissue in Gastric Ulcers, Pharm. Res. 26 (2009) 1285–1285. https://doi.org/10.1007/s11095-009-9872-8.
41. S. Jadoun, R. Arif, N.K. Jangid, R.K. Meena, Green synthesis of nanoparticles using plant extracts: a review, Environ. Chem. Lett. 19 (2021) 355–374. https://doi.org/10.1007/s10311-020-01074-x.
42. A.S. Patil, A.D. Singh, U.B. Mahajan, C.R. Patil, S. Ojha, S.N. Goyal, Protective effect of omeprazole and lansoprazole on β-receptor stimulated myocardial infarction in Wistar rats, Mol. Cell. Biochem. 456 (2019) 105–113. https://doi.org/10.1007/s11010-019-03494-y.
43. E. Cadirci, H. Suleyman, H. Aksoy, Z. Halici, U. Ozgen, A. Koc, N. Ozturk, Effects of Onosma armeniacum root extract on ethanol-induced oxidative stress in stomach tissue of rats, Chem. Biol. Interact. 170 (2007) 40–48. https://doi.org/10.1016/j.cbi.2007.06.040.
44. Yin., B. Robyn., N. Alycia., H. Siegfired., Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling, J. Cell Biol. 217 (2018) 1915–1928. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L622496320%0Ahttp://dx.doi.org/10.1083/jcb.201708007.
45. yavar Mahmoodzadeh, M. Mazani, L. Rezagholizadeh, A. Abbaspour, E. Zabihi, P. Pourmohammad, Effect of Tanacetum parthenium Extract on Total Antioxidant Capacity of Tissues Damaged by Carbon Tetrachloride in Rats, J. Ardabil Univ. Med. Sci. 16 (2017). http://jarums.arums.ac.ir/article-1-1246-en.html.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.